Способ получения структуры (c)

 

Использование: полупроводниковая техника, фотоприемники. Сущность: структуру (С) получают методом жидкофазной эпитаксии. Подложку InP сначала отжигают при 300 10 °С, затем при температуре выше и равной температуре эпитаксии под защитной пластиной InP. Процесс эпитаксии ведут при 710 + 10°С. Получают слои Jn0,53Ga0,47As с концентрацией носителей n < 11015 см-3 , имеющие повышенную фоточувствительность в спектральном диапазоне 1,85 - 2,1 мкм. 1 с.п. ф-лы, 3 пр., 1 ил.

Изобретение относится к технологии полупроводниковых материалов и может быть использовано, в частности, при создании фотоприемных устройств, работающих в спектральном диапазоне 1,85-2,1 мкм. Известен способ получения эпитаксиальных структур для фотоприемных устройств в спектральном диапазоне 1,85-2,1 мкм (1). Известный способ предусматривает жидкофазную эпитаксию структур на основе lnxGa1-xASySb1-y, изопериодных с антимонидом галлия. Недостатком известного способа является проблематичность получения слоев n-типа проводимости с малой концентрацией носителей (n<11015 см-3) из-за высокого остаточного акцепторного фона в нелегированных эпитаксиальных слоях (р 1017 см-3). Помимо этого, отсутствие полуизолирующего антимонида галлия не позволяет создать целый ряд схем, использующих указанные фотоприемные устройства. Известен способ получения структуры ln0,53Ga0,47As/lnP методом жидкофазной эпитаксии (2). Известный способ позволяет получить нелегированные эпитаксиальные слои твердого раствора ln0,53Ga0,47As с концентрацией носителей n<11015 см-3 и создать эпитаксиальные структуры на основе ln0,53Ga0,47As/lnP для фотоприемников, обладающих требуемыми фоточувствительностью и другими параметрами в спектральном диапазоне 1,0-1,65 мкм. Известный способ (2) предусматривает жидкофазную эпитаксию слоя ln0,53Ga0,47As при 650оС и не позволяет получить высокую фоточувствительность структур в спектральном диапазоне 1,85-2,1 мкм. Наиболее близок к предлагаемому способ получения структуры ln0,53Ga0,47As/lnP методом жидкофазной эпитаксии, включающим отжиг подложки lnP при 300 10оС и последующий отжиг ее под защитной пластиной lnP до температуры эпитаксии (3). Известное техническое решение (3) позволяет получить нелегированные эпитаксиальные слои твердого раствора ln0,53Ga0,47As с концентрацией носителей n<11015 см-3 и создать на их основе структуры для фотоприемников в спектральном диапазоне 1,0-1,65 мкм с требуемыми параметрами при высоком качестве морфологии поверхности структур. Известное техническое решение (3), предусматривающее жидкофазную эпитаксию слоя ln0,53Ga0,47As при 650оС, не позволяет получить высокую фоточувствительность структур в спектральном диапазоне 1,85-2,1 мкм. Цель изобретения - повышение фоточувствительности структуры ln0,53Ga0,47As/lnP в спектральном диапазоне 1,85-2,1 мкм. Указанная цель достигается тем, что в известном способе получения структуры ln0,53Ga0,47As/lnP методом жидкофазной эпитаксии, включающем отжиг подложки lnP при 300 10оС и последующий отжиг ее под защитной пластиной lnP до температуры эпитаксии, и выращивание слоя ln0,53Ga0,47As с концентрацией носителей n<11015 см-3 из раствора-расплава, выращивание слоя ведут при 71010оС. При выращивании слоя ln0,53Ga0,47As при температурах ниже 700оС не удается получить высокой фоточувствительности структуры в спектральном диапазоне 1,85-2,1 мкм. При выращивании слоя ln0,53Ga0,47As при температурах выше 720оС не удается повысить фоточувствительность структуры в спектральном диапазоне 1,85-2,1 мкм по сравнению с достигаемой при выращивании слоя при 71010оС, однако ухудшается морфология поверхности структуры из-за повышения термического разложения подложки lnP. Использование предлагаемого изобретения позволяет получить структуры ln0,53Ga0,47As/lnP с концентрацией носителей в слое твердого раствора, n<11015 см-3, обладающие высокой фоточувствительностью в спектральном диапазоне 1,85-2,1 мкм. П р и м е р 1. Выращивают эпитаксиальный слой ln0,53Ga0,47As на подложке lnP ( 107 омсм), ориентированной в (100). Исходная шихта для выращивания содержит 12.070 г индия (ИН 99,9999), 1,3758 г нелегированного арсенида индия (n11016 см-3), 0,5795 г нелегированного арсенида галлия (n6 1015 см-3) и 0,6 мг гадолиния. Процесс проводят в графитовом контейнере пенального типа в горизонтальной системе, в атмосфере проточного водорода с точкой росы -70оС. Скорость протока водорода через реактор 10-12 л/ч. После продувки реактора водородом (60 мин) слайдер с подложкой выводят из-под контейнера, нагревают подложку и контейнер с расплавом до 300оС, выдерживают при этой температуре 60 мин, после чего с помощью слайдера подложку перемещают внутрь контейнера и располагают ее под защитной пластиной фосфида индия. Температуру в реакторе повышают до 750оС, выдерживают при этой температуре 30 мин, после чего снижают температуру до 710оС и после выдержки при этой температуре в течение 10 мин подложку переводят под ванну с расплавом. Температуру печи снижают со скоростью 0,8 град/мин, после чего подложку выводят из-под ванны с расплавом, помещая ее под защитной пластиной фосфида индия. Охлаждают печь со скоростью 0,8 град/мин до 680оС, после чего ее выключают и охлаждают контейнер с подложкой до комнатной температуры. Полученный эпитаксиальный слой толщиной 9 мкм имеет, по данным локального рентгеноспектрального анализа, состав ln0,53Ga0,47As. Концентрация носителей в эпитаксиальном слое, по данным холловских измерений, 91014 см-3. Слой имеет зеркальную поверхность и не содержит металлических включений на поверхности. На поверхность эпитаксиального слоя наносят омические контакты из индия и на образцах проводят измерения спектральной фотопроводимости при 300К в спектральном диапазоне 1,65-2,2 мкм. На чертеже показана зависимость спектральной фотопроводимости образцов структур в зависимости от длины волны (спектральная фотопроводимость при = 1,65 мкм принята на 1). Спектральная фотопроводимость исследованных образцов (кривая 1) в диапазоне 1,85-2,1 мкм находится на уровне не ниже 1/2 (0,75-0,5) от интенсивности сигнала на длине волны 1,65 мкм. П р и м е р 2. Получают эпитаксиальный слой ln0,53Ga0,47As. Способ получения аналогичен приведенному в примере 1, за исключением того, что после выдержки подложки под защитной пластиной при 750оС температуру в печи снижают до 690оС, проводят выдержку при этой температуре (10 мин) и выращивание эпитаксиального слоя проводят при этой температуре в режиме принудительного охлаждения расплава со скоростью 0,8 град/мин. Исходная шихта для выращивания содержит индий (12,208 г), арсенид индия (1,184 г), арсенид галлия (0,523 г), гадолиний (0,6 мг). Подложку выводят из-под ванны с расплавом и помещают под защитной пластиной фосфида индия. Охлаждают печь со скоростью 0,8 град/мин до 680оС, после чего печь выключают. Полученный эпитаксиальный слой имеет толщину 7,5 мкм, его состав, по данным локального рентгеноспектрального анализа, соответствует ln0,53Ga0,47As, а концентрация носителей в эпитаксиальном слое 81014 см-3. Слой имеет зеркальную морфологию и не содержит металлических включений на поверхности. Спектральная фотопроводимость образцов в диапазоне 1,85-2,1 мкм находится на уровне 0,5-0,13 от интенсивности сигнала на длине волны 1,65 мкм (см. фиг. 1, кривая 2). П р и м е р 3. Выращивают эпитаксиальный слой ln0,53Ga0,47As. Способ получения аналогичен указанному в примере 1, за исключением того, что после выдержки подложки под защитной пластиной при 750оС температуру снижают до 730оС, выдерживают при этой температуре (10 мин) и выращивание слоя проводят при этой температуре в режиме принудительного охлаждения со скоростью 0,8 град/мин до 680оС, после чего печь выключают. Состав исходной шихты - индий (12,144 г), арсенид индия (1,4427 г), арсенид галлия (0,6071 г), гадолиний (0,6 мг). Полученный эпитаксиальный слой толщиной 10 мкм имеет состав ln0,53Ga0,47As с концентрацией носителей n = 81014 см-3. На поверхности слоя имеются металлические включения, морфология поверхности неудовлетворительная. Спектральная фотопроводимость образцов в диапазоне 1,85-2,1 мкм находится на уровне 0,75-0,53 от интенсивности сигнала на длине волны 1,65 мкм.

Формула изобретения

СПОСОБ ПОЛУЧЕНИЯ СТРУКТУРЫ In0,53Ga0,47 As / InP методом жидкофазной эпитаксии, включающий отжиг подложки InP сначала при 300 10oС, затем при температуре выше или равной температуре эпитаксии под защитной пластиной InP и выращивание слоя In0,53Ga0,47As с концентрацией носителей n < 1 1015 см-3 из раствора-расплава, отличающийся тем, что, с целью повышения фоточувствительности структуры в спектральном диапазоне 1,85 - 2,1 мкм, выращивание слоя ведут при 710 10o C

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к технологии получения полупроводниковых соединений А В и может быть использовано при производстве электролюминесцентных структур

Изобретение относится к способам получения монокристаллов фосфида галлия и позволяет уменьшить плотность дефектов структуры и.предотвратить растрескивание монокристаллов диаметром более 50 мм

Изобретение относится к техноло ии полупроводниковых материалов, в частно сти к технологии выращивания многокомпонентных тонкопленочных структур методом молекулярно-лучевой эпитаксии в соер вы соком вакууме

Изобретение относится к электронной промышленности, в частности к производству полупроводниковых соединений, и может быть использовано для выращивания монокристалла на основе A3B5

Изобретение относится к технологии полупроводниковых материалов и может быть использовано для выращивания эпитаксиальных слоев методом жидкофазной эпитаксии

Изобретение относится к полупроводниковой технологии и может быть использовано при получении эпитаксиальных структур GAAS путем осаждения из газовой фазы

Изобретение относится к полупроводниковой технике, в частности к технологии производства полупроводниковых приборов на основе арсенида индия

Изобретение относится к технологии полупроводниковых материалов и может быть использовано для выращивания эпитаксиальных слоев методом жидкофазной эпитаксии

Изобретение относится к технологии электронного приборостроения и может быть использовано при производстве носителей информации для запоминающих устройств

Изобретение относится к технологии полупроводников и может быть использовано при выращивании монокристаллических слоев карбида кремния, пригодных для создания на их основе электронных приборов

Изобретение относится к технологии получения полупроводниковых материалов и может быть использовано для создания оптоэлектронных приборов, работающих в спектральном диапазоне 0,59-0,87 мкм

Изобретение относится к магнитной микроэлектронике, радиационной физике твердого тела и может быть использовано при конструировании элементов памяти и логики на цилиндрических магнитных доменах (ЦМД), применяющихся в полях g-излучений

Изобретение относится к технологии материалов электронной техники, а именно к способам получения эпитаксиальных слоев полупроводниковых твердых растворов CdxHg1-xTe для изготовления на их основе фотовольтаических приемников инфракрасного излучения. Способ получения эпитаксиальных слоев CdxHg1-xTe р-типа проводимости включает выращивание эпитаксиального слоя CdxHg1-xTe с химическим составом в интервале от х=0,19 до х=0,33 мольной доли теллурида кадмия методом жидкофазной эпитаксии в запаянной кварцевой ампуле из раствора-расплава на основе теллура при температуре 500÷515°С и in situ отжиг эпитаксиального слоя в парах шихты, из которой он был выращен, сначала при температуре 350÷370°С в течение 1÷2 ч, а затем при температуре 200÷240°С в течение 20÷24 ч. Техническим результатом изобретения является воспроизводимое получение эпитаксиальных слоев CdxHg1-xTe р-типа проводимости с концентрацией носителей заряда (0,5÷2,0)×1016 см-3 при 77К с высокими значениями подвижности носителей заряда и однородным распределением электрофизических характеристик по толщине эпитаксиального слоя, а также сокращение времени производства эпитаксиальных слоев. 1 табл.

Изобретение относится к технологии материалов электронной техники, а именно к способам получения эпитаксиальных слоев узкозонных полупроводниковых твердых растворов CdxHg1-xTe для изготовления на их основе фотовольтаических приемников инфракрасного излучения. Способ получения эпитаксиальных слоев CdxHg1-xTe из раствора на основе теллура включает выращивание эпитаксиального слоя CdxHg1-xTe (0,19<х<0,33) методом жидкофазной эпитаксии в запаянной кварцевой ампуле при температуре 500÷513°С на подложку Cd1-yZnyTe (0,02<y<0,06) с кристаллографической ориентацией поверхности (111)В±0,5°, расположенную горизонтально над слоем жидкой фазы высотой от 1 до 2 мм, в условиях принудительного охлаждения системы подложка/раствор на 6÷11°С, в зависимости от требуемой толщины эпитаксиального слоя, и предварительное растворение поверхностного слоя подложки в перегретом не более чем на 2° относительно температуры ликвидуса растворе на основе теллура, из которого проводится выращивание эпитаксиального слоя, при этом охлаждение системы проводят со скоростью снижения температуры 0,2÷0,5 град/мин, начиная с момента контакта подложки с перегретым раствором. Техническим результатом изобретения является воспроизводимое получение эпитаксиальных слоев CdxHg1-xTe диаметром до 50 мм без отклонения формы поверхности от формы поверхности подложки с высотой микрорельефа на поверхности эпитаксиального слоя не более 60 нм и разнотолщинностью эпитаксиального слоя по его площади не более 1 мкм при номинальном значении толщины в интервале от 10 до 20 мкм. 1 табл.

Изобретение относится к получению полупроводниковых соединений А3В5, используемых для изготовления подложек GaN, GaAs, GaP и др
Наверх