Способ управления процессом осаждения

 

Способ управления процессом осаждения сульфидов путем введения в контролируемый кислый раствор, содержащий сульфиды и гидросульфид натрия, электродов, отличающийся тем, что, с целью обеспечения непрерывности, повышения экспрессности и точности, управление осуществляют поддержанием разности потенциалов 200 - 350 мВ между сульфидсеребряными электродами, один из которых расположен до ввода осадителя, а другой на расстоянии полного его перемешивания с раствором, причем разность потенциалов поддерживают регулированием количества вводимого гидросульфида натрия.



 

Похожие патенты:

Изобретение относится к электрохимии и может быть использовано в электронике, химотронике, электрохимических производствах , а также при научных исследованиях

Изобретение относится к средствам автоматизации количественного анализа и может быть использовано в системах контроля и регулирования в химической, коксохимической , металлургической и других отраслях промышленности для непрерывного измерения расплавов солей нитрата магния

Изобретение относится к химической технологии получения особочистых веществ и прецизионному химическому анализу, а именно к способу электрохимического детектирования субмикропримесей и сенсору для его осуществления

Изобретение относится к области аналитического приборостроения, в частности для измерения концентрации воды, кислорода и водорода при их совместном присутствии в газовых смесях

Изобретение относится к области измерительной техники, а более конкретно к устройствам, предназначенным для измерения активности ионов натрия

Изобретение относится к теплоэнергетике и может применяться для контроля водного теплоносителя на тепловых и атомных электрических станциях

Изобретение относится к области исследования жидких сред и может быть использовано при проектировании устройств для определения как степени, так и природы загрязнения природных и сточных вод

Датчик // 2035806

Изобретение относится к тестовому датчику аналита, содержащему, по меньшей мере, две подложки, образующие емкость, причем емкость имеет основную область и, по меньшей мере, две, по существу, химически изолированные вторичные зоны анализа, причем основная область, по существу, разделяет эти, по меньшей мере, две, по существу, химически изолированные вторичные зоны анализа; по меньшей мере, один первый рабочий электрод, включающий в себя первый проводник и композицию реагента, размещенный в основной области; по меньшей мере, один первый противоэлектрод, включающий в себя второй проводник и, по меньшей мере, одно первое окислительно-восстановительное вещество, размещенный в первой вторичной зоне анализа; и, по меньшей мере, один второй противоэлектрод, включающий в себя третий проводник и, по меньшей мере, одно второе окислительно-восстановительное вещество, размещенный во второй вторичной зоне анализа, при этом рабочий электрод, первый противоэлектрод и второй противоэлектрод являются независимо адресуемыми
Изобретение относится к области биофизики и прикладной биохимии и может быть использовано для контролируемого введения веществ в микрообъекты. Для этого вводят в микрообъект нанокапилляр, содержащий не менее двух изолированных друг от друга каналов, с последующим введением вещества. При этом используют нанокапилляр, у которого, по крайней мере, один из каналов содержит электрохимически активный материал и, по крайней мере, один канал содержит вводимое или генерирующее его вещество. Контроль за введением вещества осуществляют путем измерения изменения электрического потенциала и/или силы тока, обусловленных электрохимической реакцией на электрохимически активном материале в результате введения вещества. Изобретение позволяет повысить степень контроля за введением веществ в микрообъекты за счет определения дополнительных информативных параметров. 5 пр.

Изобретение может быть использовано для определения сплошности диэлектрических (например, полимерных) покрытий на металлическом прокате (например, стальном) в процессе выполнения деформации образцов с диэлектрическими покрытиями. Способ включает операцию подключения к измерительному прибору электролитической ячейки и образца с испытуемым покрытием и операцию создания контакта испытуемого покрытия с электропроводной жидкостью, которой предварительно заполняют электролитическую ячейку. Способ согласно изобретению дополнен операцией подключения источника тока в электрическую цепь, образованную металлическим образцом с испытуемым покрытием, электролитической ячейкой и измерительным прибором, и операцией, при осуществлении которой одновременно выполняют непрерывную деформацию металлического образца с испытуемым покрытием и непрерывный контроль сплошности нанесенного на него испытуемого покрытия. Изобретение обеспечивает возможность оперативного исследования сплошности диэлектрических (например, полимерных) покрытий и оперативного определения с высокой точностью прочности диэлектрических покрытий в процессе непрерывной деформации металлических образцов с диэлектрическими покрытиями, например при вытягивании в металлическом образце с покрытием лунки по Эриксену. 1 з.п. ф-лы.

Использование: для определения сплошности покрытия при его деформации. Сущность изобретения заключается в том, что устройство содержит источник тока, измерительный прибор и электролитическую ячейку, изготовленную из диэлектрического материала, в нижнюю часть которой герметично вмонтирован электрод, а в верхней части закреплен контактный элемент, выполненный из пластичного коррозионно-стойкого материала, причем электролитическая ячейка снабжена системой ее заполнения электролитом, дополнительно устройство снабжено узлом деформации, под которым размещен подъемный столик с возможностью вертикального перемещения, при этом на подъемном столике жестко закреплена вертикальная направляющая с электролитической ячейкой, подпружиненной в направлении к узлу деформации, электрод подключен в электрическую цепь измерительного прибора и источника тока. Технический результат: обеспечение возможности быстрого контроля сплошности диэлектрических покрытий при деформации металлических образцов. 1 з.п. ф-лы, 3 ил.
Наверх