Способ термической обработки деталей из бериллия

 

Изобретение относится к цветной металлургии. Способ включает в себя высокотемпературный нагрев, выдержку и охлаждение в вакууме 5-10-4-10-5мм Hg, предварительно деталь оборачивают в графитовую ткань ТГН. 1 ил.

Изобретение относится к порошковой металлургии, а точнее к термической обработке деталей из бериллия.

Обладая уникальным сочетанием физико-механических свойств (малая плотность, высокая жесткость, размерная стабильность и радиационная прозрачность) бериллий нашел широкое применение в качестве конструкционного материала деталей гидроприборов, а также различных узлов и деталей космических аппаратов.

Одним из основных недостатков бериллия, как конструкционного материала, является его хрупкость при низких температурах. Поскольку полуфабрикаты бериллия (прутки, листы, штамповки) получаются деформированием спеченной горячепрессованной заготовки, а деформация происходит при высоких температурах (800-1500оС), то в полуфабрикатах появляется остаточное напряжение, причем достигающее очень больших значений (до 20,0 кгс/мм2).

В процессе механической обработки, шлифовке, полировке также возникают остаточные напряжения. Все это может приводить к преждевременному разрушению деталей или к их размерной нестабильности. Поэтому для предотвращения разрушения изделий в процессе эксплуатации в технологических процессах предусматривается несколько высокотемпературных отжигов, температурный интервал которых обычно составляет 600-800оС.

Поскольку, при таких высоких температурах отжига происходит окисление поверхности, термообработку необходимо проводить в достаточно хорошем вакууме (при остаточном давлении 5 10-4-5 10-5 мм рт. столба).

Учитывая то, что детали из бериллия могут иметь размеры до 1500 мм, для получения разрежения указанной степени в таких больших объемах используются диффузионные масляные насосы. Их использование приводит к загрязнению пространства печи маслом, которое при взаимодействии с бериллием, нагретым до высоких температур образует тонкие пленки (цвета побежалости), удаление которых представляет весьма трудоемкий процесс.

Кроме того, данные отжиги проводятся и на окончательной стадии изготовления деталей, поэтому удаление пленок не всегда возможно, поскольку на деталях есть классные поверхности и отверстия.

Наиболее близким к сущности изобретения является высокотемпературный гомогенизирующий отжиг (700оС - 30 ч), проводимый практически для всех полученных полуфабрикатов, перед их запуском в дальнейшее производство.

Целью изобретения является получение чистых поверхностей бериллиевых изделий в процессе термической обработки.

Указанная цель достигается тем, что перед загрузкой в печь бериллиевая деталь предварительно оборачивается графитовой тканью марки Т. Г. Н.

На чертеже представлена сборка из бериллия после высокотемпературного отжига. Часть деталей была закрыта графитовой тканью, а часть оставалась открытой. На фотографии хорошо видно, что незакрытая часть покрылась пленкой (черная на фотографии), а там, где была ткань - поверхность чистая и блестящая.

Таким образом, использование графитовой ткани позволяет надежно защитить поверхность бериллиевых деталей от загрязнения. (56) Гр. Ленинградского политехнического института, 1986, N 417, 72-75. Иванов В. А. , Штейн В. П.

Формула изобретения

СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ ИЗ БЕРИЛЛИЯ, включающий высокотемпературный нагрев, выдержку и охлаждение с печью в вакууме 5 10-4 - 5 10-5 мм Н9, отличающийся тем, что перед термообработкой деталь предварительно оборачивают в графитовую ткань марки ТГН.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к металлургии

Изобретение относится к металлургии, в частности к способам получения анизотропных постоянных магнитов на основе соединений редкоземельных металлов с переходными металлами и бором

Изобретение относится к области металлурги и касается изготовлений заготовок для типографских клише из цинка, легированного магнием и алюминием

Изобретение относится к металлургии, в частности к способам получения крупногабаритных анизотропных магнитов из сплава марганец-алюминий-углерод

Изобретение относится к металлургии сплавов, обладающих эффектом памяти формы (ЭПФ), и может быть использовано в автоматике, технике высоких давлений, а также при создании барочувствительных датчиков приборов

Изобретение относится к обработке металлов давлением, а именно - к производству кальциевой проволоки прессованием, и может быть использовано для изготовления биметаллической проволоки
Изобретение относится к области металлоизделий промышленного назначения, а именно металлической проволоки

Изобретение относится к области обработки металлических лент и получения магнитомеханических маркеров для электронного контроля изделий
Изобретение относится к области металлургии, в частности к получению плоского профиля из гафния, и может быть использовано в качестве конструкционного материала в активных зонах атомных реакторов

Изобретение относится к области обработки металлов давлением с использованием интенсивной пластической деформации и предназначено для получения нанокристаллических материалов с увеличенным уровнем механических свойств, и может быть использовано при обработке изделий из магнитомягких сплавов. Способ изготовления изделий из магнитомягкого сплава на основе железо-кобальт равноканальным угловым прессованием включает пескоструйную обработку поверхности заготовок, травление в смеси серной, плавиковой и азотной кислоты при их соотношении, г/л: 550-750, 250-300, 250-300, активирование поверхности заготовки в растворе соляной кислоты с концентрацией не менее 200 г/л, формирование на поверхности заготовки гальванического промежуточного слоя из никеля толщиной 3-5 мкм, формирование гальванического пластичного слоя из меди толщиной 80-100 мкм и равноканальное угловое прессование заготовок при давлении 1000 МПа в диапазоне температур 450-500°С. Изобретение обеспечивает значительное снижение электрического потенциала поверхности образцов, что снижает их окисляемость и позволяет увеличить количество проходов при прессовании. 1 ил., 1 табл., 2 пр.

Изобретение относится к металлургии, в частности к термической обработке титановых сплавов. Способ термической обработки изделий из титанового сплава ВТ16 включает закалку путем нагрева до температуры 790-830°C, выдержки и охлаждения в воде. После закалки изделие нагревают до температуры (0,5-0,6)tcm, где tcm - температура старения сплава, °C, ведут охлаждение до температуры -10°C при одновременном воздействии потока газа и акустического поля с уровнем звукового давления 140-160 дБ и проводят последующее старение при температуре 560°C в течение 3 часов с охлаждением на воздухе. Уменьшается продолжительность старения титанового сплав ВТ16 в процессе старения при сохранении высокого уровня прочности и пластичности. 1 ил.

Изобретение относится к металлургии, в частности к термической обработке титановых сплавов. Способ термической обработки изделия из деформируемого сплава ВТ23 характеризуется тем, что изделие нагревают до 850°С, выдерживают 1 ч, охлаждают в воде и подвергают старению при температуре 550°С в течение 10 ч. Затем изделие нагревают, выдерживают при температуре 300-400°С и проводят последующее охлаждение до температуры 20 ÷ (-10)°С при одновременном воздействии потока газа и акустического поля звукового диапазона частот с уровнем звукового давления в пределах 140-160 дБ. Измельчаются зерна избыточной фазы α-твердого раствора, а также все структурные составляющие, формируется внутризеренная структура с выстраиванием дислокаций в виде упорядоченных образований и уменьшением внутренних микронапряжений на границах раздела фаз. Повышается прочность при удовлетворительной пластичности, а также повышается релаксационная стойкость сплавов. 1 ил., 2 табл.

Изобретение относится к области металлургии, а именно к обработке давлением и может быть использовано для получения из этих материалов заготовок, полуфабрикатов и изделий с регламентированной структурой, используемых в аэрокосмической и автомобильной технике. Способ термомеханической обработки заготовок из литых (γ+α2)-интерметаллидных сплавов на основе γ-TiAl включает нагрев и деформацию. Перед нагревом и деформацией заготовку подвергают отжигу при температуре в диапазоне от Тα-100°С до Тα+100°С в течение не менее 10 минут, где Тα - температура α↔γ превращения. Затем проводят охлаждение заготовки со скоростью 5-100°С/с до комнатной температуры, осуществляют нагрев в (γ+α2)-фазовую область до температуры ниже на 5-200°С температуры эвтектоидного превращения и деформацию в изотермических условиях со скоростью деформации 10-1-10-4 С-1 и степенью деформации е не менее 0,7, после чего проводят охлаждение заготовки со скоростью 5-100°С/с до комнатной температуры. Снижается напряжение течения при деформации, обеспечивается мелкозернистая структура. 5 ил., 11 пр.

Изобретение относится к области металлургии, а именно к изготовлению полосы из магнитомягкого сплава. Способ изготовления полосы из магнитомягкого сплава толщиной менее 0,6 мм, пригодной для механической резки, включает холодную прокатку полосы, полученной горячей прокаткой полуфабриката, затем полосу подвергают непрерывному отжигу пропусканием через печь непрерывного действия при температуре в пределах от температуры перехода упорядочения/разупорядочения сплава до температуры начала ферритно-аустенитного превращения сплава, причем скорость движения полосы устанавливают таким образом, чтобы время выдержки полосы в печи непрерывного действия при температуре отжига составляло меньше 10 минут. Скорость охлаждения полосы, выходящей из печи непрерывного действия в интервале между температурой перехода упорядочения/разупорядочения сплава и 200°С, превышает 600°С/ч. Затем осуществляют охлаждение до температуры менее 200°С. Полученные полосы обладают высокой пластичностью для дальнейшей механической резки. 3 н. и 13 з.п. ф-лы, 10 табл., 8 пр.

Изобретение относится к трубопрокатному производству. Способ производства холоднокатаных товарных труб размером 219×9×11700-12800 мм из титановых сплавов ПТ-1М и ПТ-7М включает отливку слитков в вакуумно-дуговых печах, ковку слитков в поковки, обточку поковок в заготовки размером 500±5×1750±25 мм, сверление в заготовках центрального отверстия диаметром 90±5 мм, шоопирование Al2O3, нагрев в методических печах в муфелях до температуры 1140-1160°C, прошивку заготовок размером 500±5×90±5×1750±25 мм в стане поперечно-винтовой прокатки на оправке диаметром 300 мм с коэффициентом вытяжки μ от 1,39 до 1,46 в гильзы размером 515×вн.315×2400-2590 мм, прокатку гильз на пилигримовом стане в калибре 351 мм с вытяжкой μ=4,78 и подачей в очаг деформации m=18-20 мм, в передельные трубы размером 338×28×10300-11200 мм, отрезку технологических отходов, правку передельных труб, резку передельной трубы на две трубы равной длины, расточку и обточку горячекатаных передельных труб в трубы-заготовки размером 325×15×5150-5600 мм, прокатку их на станах ХПТ по маршрутам 325×15×5150-5600 - 273×12×7300-7950 - 219×9×11700-12800 мм с относительными обжатиями по стенке δm=20,0%, δ1m=25,0% и коэффициентами вытяжки μm=1,49 и μ1m=1,66. 1 табл.
Наверх