Устройство для регистрации характеристик электромагнитных импульсов

 

Изобретение относится к технике управления оптическим излучением и может быть использовано для регистрации параметров электромагнитного поля. Электрооптический дефлектор, оптически связанный с источником лазерного излучения и блоком фотодетекторов, выполнен в виде призмы, первая входная грань которой нормальна направлению распространения электромагнитных импульсов, вторая входная грань нормальна оптической оси дефлектора и источника и расположена под углом (/2-), причем = arcsin , где - соответственно показатель преломления и диэлектрическая проницаемость материала дефлектора. 2 ил.

Изобретение относится к технике управления оптическим излучением и может быть использовано при проведений измерений параметров электромагнитного поля.

Известно устройство для контроля параметров импульсных и импульсно-модулированных электрических сигналов, содержащее призменный дефлектор, источник электрических импульсов, источник лазерного излучения и ФЭУ.

Известно также устройство для измерения амплитудно-временных параметров на основе электрооптического эффекта. Схема содержит электрооптический амплитудный модулятор, источник электрических импульсов, лазер и ФЭУ.

Недостатками известных устройств являются, во-первых, их частотная ограниченность (fгр 1-3 Ггц) и, во-вторых, полное отсутствие частотной избирательности, т. е. неприменимость подобных схем при работе в условиях интенсивных фоновых сигналов.

Наиболее близким к изобретению по технической сущности является устройство для сканирования светового луча в зависимости от приложенного электрического поля, содержащее дефлектор на сдвоенных призмах из кристалла КДР, источник электрических импульсов, лазер и блок фотодетекторов.

Устройство под действием приложенного электрического поля изменяет угол отклонения лазерного луча на величину =n30r63Ez . Это позволяет по величине угла отклонения отслеживать изменение электрического поля.

Недостатком известного устройства является узость его эксплуатационных возможностей. Это, во-первых, его частотная ограниченность, а именно fгр <3 ГГц, обусловленная тем, что из-за сравнимости скоростей света и скорости распространения электрического импульса при увеличении частоты в кристалле возникает сложная картина распределения электрического поля. Причем практически невозможно определить форму электрического импульса, так как по ходу луча происходит его многократная модуляция. Во-вторых, подобная схема не обладает частотной избирательностью и, таким образом, не применима в условиях, когда фоновые сигналы отличной от измеряемой частоты по интенсивности сравнимы или превосходят полезный сигнал.

Кроме того, данная схема требует определенной коммутации с металлическими контактами, которые также ограничивают полосу частот и чувствительны к фоновым наводкам.

Целью изобретения является расширение частотного диапазона устройства для регистрации характеристик электромагнитных импульсов.

Цель достигается за счет того, что в устройстве для регистрации характеристик электромагнитных импульсов, содержащем блок фотодетекторов, источник лазерного излучения и призменный электрооптический дефлектор, последний выполнен в виде призмы с первой входной гранью, второй гранью, оптически связанной с источником лазерного излучения, нормальной к оптической оси дефлектора и источника и расположенной под углом (/2-) к входной грани, причем =arcsin(n/),где n - показатель преломления материала дефлектора; - диэлектрическая проницаемость материала дефлектора, и выходной гранью, параллельной второй грани и оптически связанной с блоком фотодетекторов.

На фиг. 1 представлена блок-схема устройства для регистрации характеристик электромагнитных импульсов, которое содержит источник когерентного излучения 1, электрооптический дефлектор в виде призмы 2 с входной гранью 3 и оптической осью, проходящей через противолежащие грани 4, выполненные под углом (/2-) к входной грани 3, блок фотодетекторов 5.

На фиг. 2 показан принцип работы дефлектора, где d - диаметр светового луча; L - длина оптической оси кристалла; - угол сканирования; - напряженность электрического поля; - градиент напряженности поля по оси ОX; - направление распространения электрического импульса.

Устройство работает следующим образом. Лазерный луч при прохождении через кристалл 2, в котором бегущая электромагнитная волна создает градиент показателя преломления, испытывает неравномерное по поперечному сечению преломление. В результате на выходе из кристалла 4 отмодулированный световой пучок приобретает дополнительное угловое распределение, вызванное неодинаковостью скоростей распространения света для составляющих частей светового пучка, движущихся в оптической среде с переменным показателем преломления. В этом случае ось луча сканируется на угол =n30r63Ez , где no - показатель преломления в направлении, перпендикулярном оптической оси; r63 - электрооптический коэффициент кристалла; Ez - напряженность поля оптической оси; L - длина оптической оси дефлектора, D - диаметр светового луча.

Требуемая синхронизация достигается выбором угла , так чтобы скорость света в направлении оси OZ была равна скорости распространения постоянной фазы электромагнитного поля по той же оси. Поскольку скорость света по оси ОZ v1= c/no, где no - показатель преломления, а скорость распространения постоянной фазы по оси О V2= где - диэлектрическая проницаемость дефлектора, то из условия v1= v2получают =arcsin(n/).

В этом случае имеет место фазировка скорости распространения светового луча и фазы электромагнитного поля. Поэтому световой пучок движется в кристалле в постоянном для него электрическом поле.

Поскольку время релаксации кристаллической решетки дефлектора составляет 10-13 с, то для электрических импульсов с длительностями до 10-12 с в дефлекторе успевает установиться соответствующее электрическое поле, т. е. для электрических импульсов до 10-12 с инерционностью кристаллической решетки не существенна.

С выхода дефлектора сканированный световой пучок попадает на волоконно-оптическую делительную матрицу и далее регистрируется на фотодетекторах. Интенсивность, прошедшая в определенный угловой интервал, отслеживается фотоэлектронными усилителями, а угол отклонения - их расположением. Таким образом, по углу отклонения определяется амплитуда поля по формуле.

E= [1/(no3r63L/D)] * и время отклонения на данный угол = где I - мощность лазера; - энергия, зарегистрированная ФЭУ.

Расчеты показали, что, например, для кристалла типа КДР при частотах f 10 Ггц, напряженности поля 104 В/см угол превосходит угол дифракционной расходимости = в N 2-3 раза ( - длина волны лазерного луча).

При той же частоте и напряженности поля, но кристалле типа LiNbO3число N 8-10. При использовании кристаллов типа KTN величина N достигает значений N 30-40.

Использование изобретения позволяет расширить частотный диапазон устройства для регистрации характеристик электромагнитных импульсов. С помощью предложенного устройства появляется возможность проводить измерения характеристик импульсных и импульсно-модулированных электрических сигналов при длительности импульсов до 10-12 с; добиться высокой частотной селективности, регулируя лишь диаметр светового луча; диафрагмируя отклоненный световой пучок, получать сверхкороткие световые импульсы (до 10-12 с); работать в условиях активных электромагнитных наводок, сравнимых по амплитуде с измеряемым сигналом.

Формула изобретения

УСТРОЙСТВО ДЛЯ РЕГИСТРАЦИИ ХАРАКТЕРИСТИК ЭЛЕКТРОМАГНИТНЫХ ИМПУЛЬСОВ, содержащее блок фотодетекторов, источник лазерного излучения и призменный электрооптический дефлектор, отличающийся тем, что, с целью расширения частотного диапазона, электрооптический дефлектор выполнен в виде призмы с первой входной гранью, второй гранью, оптически связанной с источником лазерного излучения, нормальной к оптической оси дефлектора и источника и расположенной под углом / 2 - к входной грани, причем =arcsin(n/) где n - показатель преломления материала дефлектора; - диэлектрическая проницаемость материала дефлектора, и выходной гранью, параллельной второй грани и оптически связанной с блоком фотодетекторов.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к области оптико-электронного приборостроения и может быть использовано в приборах и устройствах модуляции света, оптической обработки информации, а также оптических корреляторах

Изобретение относится к модуляции света методами управления интенсивностью света с применением деформируемых слоев и может найти применение в устройствах управления светом и оптической обработки информации

Изобретение относится к устройству для преобрзования гауссовых пучков и может быть использовано для решения широкого круга прикладных задач в области технической физики, требующих получения негауссовых пучков в широкой области спектра

Изобретение относится к приборостроению, в частности может быть использовано в интерферометрах, Фурье - спектрометрах видимого и ближнего ИК-диапазонов

Изобретение относится к оптическому приборостроению и может быть использовано в оптических линиях связи, в измерительной технике для преобразования электрических сигналов в оптические

Изобретение относится к оптоэлектронике и может быть использовано в устройствах оптической обработки информации

Изобретение относится к оптоэлектронике и волноводной оптике и может быть использовано для модулирования оптического излучения

Изобретение относится к технической физике, в частности к классу устройств для исследования внутренней структуры объектов, и может быть использовано в медицине для диагностики состояния отдельных органов и систем человека, в частности, для оптической когерентной томографии, и в технической диагностике, например, для контроля технологических процессов

Изобретение относится к области оптической технике, а именно к системам регулирования и стабилизации интенсивности светового излучения, и может быть использовано для создания оптической аппаратуры различного назначения

Изобретение относится к способам управления потоком излучения в ИК области спектра и может быть использовано в практике создания оптических систем

Изобретение относится к области нелинейной волоконной и интегральной оптики, а точнее к области полностью оптических переключателей и оптических транзисторов

Изобретение относится к области нелинейной волоконной и интегральной оптики, а точнее к области полностью оптических переключателей и оптических транзисторов

Изобретение относится к приборам для измерения мощности инфракрасного излучения и может быть использовано для бесконтактного измерения температуры
Наверх