Твердый фторпроводящий электролит

 

Использование: в твердофазных литиевых химических источниках тока. Сущность изобретения: твердый фторпроводящий электролит содержит, мол.%: LiF 50 - 85, LaF3 10 - 30, SrF2 5 - 20. 1 табл.

Изобретение относится к материалам с высокой ионной проводимостью, расширяет группу перспективных твердых электролитов с фторионной проводимостью, которые могут быть использованы для изготовления источников тока, а также электрохимических мембран для химических сенсоров фторсодержащих соединений в газовой фазе, с применением в химической и электрохимической промышленности, в ядерной энергетике и в экологических контрольных системах.

Фторид лантана - LaF3 - хорошо известный фторионный проводник, который применяется в электрохимических устройствах. Он характеризуется величиной ионной проводимости 10-5Ом-1см-1 при комнатной температуре и =8х10-3 Ом-1см-1 при 460оС. Его недостаток - высокая температура плавления - 1500оС, которая существенно затрудняет получение его в виде монокристаллов или газопрочной керамики. Известен способ понижения температуры синтеза твердых электролитов за счет применения эвтектических композитов, одной из фаз которых является твердый электролит. Аналогом предлагаемого технического решения является композит, содержащий 18% LaF3-82%LiF (мол.%), отвечающий эвтектике в системе LiF-LaF3. Температура плавления этой эвтектики 760оС, что позволяет синтезировать композит из расплава, нагретого до 800оС. Однако композита примерно на 2 порядка ниже, чем у LaF3.

Ближайшим техническим решением является твердый электролит, содержащий не менее 70% фторидов лантана или церия с добавками фторидов щелочных и щелочноземельных элементов, получаемый методом горячего прессования. Однако высокое содержание тугоплавкого компонента все равно требует высокой температуры синтеза.

Цель изобретения - создание многофазного твердого электролита, содержащего LaF3 с высокой ионной проводимостью и низкой температурой синтеза.

Поставленная цель достигается тем, что многофазный материал содержит в качестве компонентов фториды лантана, лития, стронция в следующих соотношениях: LaF3:10-30 мол.%, LiF:50 - 85 мол.%, SrF2:5 - 20 мол.%. Эти соотношения определяются характером фазовых равновесий в тройной системе LiF-SrF2-LaF3 соответствуют равновесию трех фаз: LiF и твердых растворов Sr2+xLaxF2+z и La1-ySryF3-y в окрестности тройной эвтектики с температурой плавления 740 5оС.

Композиты соответствующего состава легко приготавливаются в виде плотных компактных буль, легко поддающихся механической обработке, путем сплавления компонентов при температуре 800 50оС в инертной или фторирующей атмосфере. Ионная проводимость их незначительно меняется в зависимости от состава внутри указанных соотношений компонентов и превышает LaF3 при температурах выше 300оС (при 460оС - в 2 раза). При выходе за границы указанного интервала меняется фазовый состав композита, что влияет на величину ионной проводимости.

П р и м е р 1. Порошки фторидов лития, стронция, лантана марки х.ч., предварительно переплавленные во фторирующей атмосфере продуктов пиролиза тефлона, навешивались в соотношении: 60% LiF - 20% LaF3 - 20% SrF2 (мол.%), перетирались в агатовой ступке и нагревались в атмосфере гелия в стеклографитовом тигле до 820-850оС и после выдержки в течение 30 мин при этой температуре, охлаждались со скоростью около 20о/мин. Ионная проводимость измерялась методом импедансной спектроскопии на приборе ВМ-507 в интервале частот 5 Гц - 500 кГц при температурах 25-500оС с использованием электродов из коллоидного графита. Температурная зависимость ионной проводимости, полученная в эксперименте, описывается уравнением = exp- (91<t(С)<463), что соответствует величине 460оС=1,2х10-2 Ом-1см-1.

П р и м е р 2. Композит состава 70% LiF - 20% LaF3 - 10% SrF2(мол.%) приготовлен и исследован аналогично описанному в примере 1. Температурная зависимость ионной проводимости описывается уравнением: = exp- (91<t(С)<463), что соответствует величине 460оС=1,2х10-2 Ом-1см-1.

П р и м е р 3. Композит состава 75% LiF - 18% LaF3 - 7% SrF2(мол.%) приготовлен и исследован аналогично описанному в примере 1. Температурная зависимость ионной проводимости описывается уравнением: = exp- (91<t(С)<463), что соответствует величине 460оС=2,1х10-2 Ом-1см-1.

П р и м е р 4. Композит состава 82% LiF - 18% LaF3 (мол.%) приготовлен и исследован аналогично описанному в примере 1. Температурная зависимость ионной проводимости описывается уравнениями: = exp- (68<t(С)<177) и = exp- (177<t(С)<463), что соответствует величине 460оС= 3,4х10-4 Ом-1см-1.

Результаты измерений приведены в таблице.

Формула изобретения

ТВЕРДЫЙ ФТОРПРОВОДЯЩИЙ ЭЛЕКТРОЛИТ системы, отличающийся тем, что указанные компоненты взяты при следующем соотношении, мол.%: LiF 50 - 85 LaF3 10 - 30 SrF2 5 - 20

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Ионистор // 2012105
Изобретение относится к элементной базе микроэлектроники, в частности к твердотельным конденсаторам с двойным электрическим слоем - ионистором, и может быть использовано в интегральных схемах

Изобретение относится к высокотемпературным электрохимическим устройствам с твердооксидным электролитом

Изобретение относится к Ag+ проводящим твердым электролитам и может быть использовано при изготовлении электрохимических накопителей энергии полисторов

Изобретение относится к электротехнике и касается твердых литийпроводящих электролитов, предназначенных для использования в химических источниках тока с анодом на основе лития
Изобретение относится к области электротехники и может быть использовано при производстве литий-фторидных химических источников тока (ХИТ)

Изобретение относится к способу производства электрической энергии, к устройству для осуществления способа, к соединению, имеющему N-F-связь и производящему электрическую энергию, и к батарее, использующей соединение, обеспечивает решение задачи производства электрической энергии путем использования материалов в качестве активного материала для батареи, электролита и т.п., которые удобны в обращении и являются приемлемыми с точки зрения охраны окружающей среды

Изобретение относится к первичным автономным батареям для систем длительного постоянного действия

Изобретение относится к области твердотельных полимерных ионных проводников, а именно к литийпроводящим полимерным электролитам, которые могут быть использованы в литиевых перезаряжаемых батареях, электрохимических устройствах и сенсорах

Изобретение относится к области электротехники, в частности к твердотельным химическим источникам тока, и может быть использовано в производстве первичного и вторичного источников тока

Изобретение относится к электротехнической промышленности и может быть использовано при производстве литиевых первичных и вторичных источников тока

Изобретение относится к электротехнической промышленности и может быть использовано при производстве литиевых первичных и вторичных источников тока

Изобретение относится к химическим источникам тока а, именно к материалу для литийпроводящего твердого электролита, используемого в твердотельных литиевых источниках тока

Изобретение относится к области твердотельных полимерных ионных проводников, а именно к ион-проводящим полимерным электролитам, которые могут быть использованы в электрохимических устройствах, в частности в электродно-активных мембранах

Изобретение относится к электрохимии, а именно к твердым электролитам для различных электрохимических устройств
Наверх