Способ получения низшего диалкилового эфира 2-дифторметил-4- (2-метилпропил)-6- трифторметил-3,5- пиридиндикарбоновой кислоты

 

Использование: в сельском хозяйстве в качестве гербицида. Сущность изобретения: продукт - низший диалкиловый эфир 2 - дифторметил - 4 -(2- метилпропил) - 6 - трифторметил 3,5 - пиридиндикарбоновой кислоты. Реагент 1: 1,4 - дигидро-2,6-бис - (трифторметил) - 4 - (2- метилпропил) -3,5 - пиридиндикарбоновая кислота. Условия реакции: дегидрофторирование, основание - 1,4-диазобицикло-(2,2,2)-октан, молярное соотношение основания и эфира (0,5-1,0):1. 3 з.п. ф-лы, 1 табл.

Изобретение относится к области сложных эфиров, в частности к усовершенствованному способу получения низшего диалкилового эфира 2-дифторметил-4-(2-метилпропил)-6-трифторметил-3,5-пиридинка- рбоновой кислоты (I), используемого в качестве гербицида. В описании используют следующие обозначения: DABCO - 1,4-диазабицикло-(2.2.2)-октан DBU-1,8-диазабицикло-(5.4.0)-ундец-5-ен ETFAA - этил 4,4,4-трифтор-3-оксобутаноат IVA - изовалериановый альдегид или 3-метилбутанал % Анализ - масса в % продукта % Выход - 100 х моль продукта /моль исходного вещества первоначального IVA.

Там, где при обсуждении эффекта изменения параметра процесса показан выход, все переменные процесса, в которых четко не указано, что они изменяются, поддерживаются постоянными.

Известен способ получения диэтил-2-дифторметил-4-(2-метилпропил)-6-трифтор- метил-3,5-пиридинкарбоксилата осуществляют катализируемой основанием типа Ханаща молекулярной циклизацией этил-4,4-трифтор-3-оксобутаноата (этилтрифторацетоацетата или ETFAA) и изовалерианового альдегида с образованием замещенного дигидроксипирана, с последующим аммонолизом. Дигидратация полученных дигидроксипиперидинов приводит к получению смеси 1,4- и 3,4-дигидропиридин-изомеров. Дегидрофторирование дигидропиридинов с использованием органического основания такого, как DBU или 2,6-лутидин, позволяет получить хорошие выходы (80% в общем) сложного диэтилового эфира пиридина.

Недостаток способа - низкий выход целевого продукта.

Цель - повышение выхода целевого продукта.

Поставленная цель достигается предложенным способом получения соединений I, заключающимся в том, что дегидрофторируют соответствующий эфир 1,4-дигидро-2,6-бис-(трифторметил)-4-(2-метилпропил)-3,5-пиридиндикарбоновой кислоты путем обработки органическим основанием при повышенной температуре в среде инертного апротонного растворителя.

Отличительной особенностью способа является то, что в качестве органического основания используют 1,4-диазабицикло(2,2,2)-октан при мольном соотношении его и эфира, равном (0,5-1,0):1.

Желательно использовать ДАВСО в виде водного раствора, в качестве растворителя - бензол, толуол, ксилол, метилциклогексан, монохлорбензол и бутиронитрил, процесс осуществлять в безкислородных условиях.

П р и м е р 1. В колбу вместимостью 3 л прибавляют 502 г (1,2 моль) диэтил-1,4-дигидро-2,6-бис(трифторметил)-4-(2-метилпро- пил)-3,5-пиридиндикарбоксилата в 600 г толуола. Данный раствор барботируют под поверхностью азотом в течение 30 мин. Затем прибавляют 146 г (1,3 моль) DABCO и 219 г воды в виде водного раствора. Реакционную смесь нагревают при 75-80оС в течение 4,75 ч, подвергая ее мониторингу газовой хроматографией. По завершении реакции смесь охлаждают до 50оС и водную фазу удаляют. Толуоловый раствор промывают 130 г 15%-ного солевого раствора и рН водной фазы доводят до 4-5 с использованием небольшого количества концентрированной серной кислоты. Водную фазу затем удаляют, оставляя толуоловый раствор искомого продукта. Анализ реакционной смеси показывает присутствие 454 г (95%) диэтил 2-дифторметил-4-(2-метиопропил)-6-трифторметил-3,5-пиридиндикарбоксилата.

Приведенная выше экспериментальная методика является характерной для процесса использования DABCO в реакции дегидрофторирования. Дополнительные примеры, использующие различные количества основания, растворители, а также температуры, приведены в таблице. Все материалы загружают на основе количества используемого исходного вещества - дигидропиридина.

Несмотря на то, что способ настоящего изобретения специфически иллюстрируется с точки зрения специфического пиридиндикарбоксилатного продукта, он в равной степени приемлем для получения других соединений пиридина. Выбор альдегидного исходного вещества, конечно, будет определять замещение в положении 4 конечного пиридинового продукта. Также очевидно, что могут быть использованы трифторацетонацетатные сложные эфиры низшего алкила, иные, нежели сложный этиловый эфир.

П р и м е р 10 (прототип). Получение диметил-2-(дифторметил)-6-(трифторметил)-4-изобутил-3,5-пиридиндикарбоксилат а.

(а) Дегидрофторирование с использованием DBU.

Смесь 23,0 г (0,0591 моль) дигидропиридина. 12,2 г (0,077 моль) 96%-ной чистоты DBU и 100 мл ТГФ нагревают с обратным холодильником в течение 3 ч и вливают в 250 мл 3 н. раствора НСl. Маслянистый осадок экстрагируют в простой эфир (2 х 100 мл). Эфирные экстракты сушат (MgSO4) и концентрируют с получением 14,4 г масла, которое содержит желаемый продукт и кислые продукты. Это масло растворяют в простом эфире и экстрагируют 100 мл насыщенного бикарбоната натрия. Эфирный слой сушат (MgSO4) и концентрируют с получением 8,9 г масла, которое имеет 71%-ную чистоту искомого продукта.

Экстракт бикарбоната натрия подкисляют концентрированным раствором НСl с получением масла, которое экстрагируют в простой эфир. Эфирный слой сушат (MgSO4) и концентрируют с получением 4,8 г остатка, который содержит монокарбоновую кислоту и дикарбоновую кислоту (9:1), полученные из искомого продукта. Этот остаток обрабатывают 3,0 г (0,0217 моль) карбоната калия, 20 мл метилиодида и 50 мл ацетона. Смесь нагревают с обратным холодильником в течение 42 ч и концентрируют. Остаток обрабатывают водой и экстрагируют простым эфиром (2 х 100 мл). Эфирный слой сушат и концентрируют. Остаток перегоняют в кубе Kugelrohr под давлением 1 тор (133,322 Н/м2) (температуре куба 130оС) с получением 5,1 т (23,4% из дигидропиридина) искомого продукта. Описанный выше 71%-ной чистоты искомый продукт хроматографируют ЖХВР с использованием 3% этилацетата/циклогексана в качестве элюента, получая раннюю фракцию (0,79 г; время удерживания 7-8,5 мин), которую идентифицируют как метил 6-(дифторметил)-4-(изобутил)-2-(трифторметил)-3-пиридинкарбокси- лат. Вторая фракция представляет собой дополнительно 6,4 г (29,4%) чистого пиридинового продукта.

(b) Дегидрофторирование с использованием трибутиламина.

Смесь 38,9 г 80% -ной чистоты дигидропиридина и 20,5 г трибутиламина нагревают до 155оС в течение 30 мин. Реакционную смесь охлаждают до температуры 30оС и разбавляют 100 мл толуола. Толуоловый раствор промывают последовательно 6 н. раствором хлористоводородной кислоты, насыщенным раствором бикарбоната натрия и солевым раствором, сушат и концентрируют с получением 36,4 г 73%-ной чистоты продукта, что соответствует выбору 85%. Данную реакцию можно осуществлять при избытке трибутиламина (10 экв.), получая по существу аналогичные результаты.

(с) дегидрофторирование с использованием трибутиламина в толуоле.

Смесь 38,9 г 80%-ной чистоты дигидропиридина, 20,4 г трибутиламина и 30 мл толуола нагревают до 115оС в течение 40 мин и сохраняют при 115оС в течение 1 ч и 40 мин. Реакционную смесь охлаждают и обрабатывают, как в части (b), с получением 36,3 г 76%-ной чистоты продукта, что соответствует 90%-ному выходу.

(d) Дегидрофторирование с использованием триэтиламина.

Смесь 11,8 г 80%-ной чистоты дигидропиридина и 3,34 г триэтиламина нагревают до 100оС в течение 10 мин, затем при 125оС в течение 10 мин. Реакционную смесь охлаждают и обрабатывают, как в части (b), с получением 8,14 г 76%-ной чистоты продукта, что соответствует 63%-ному выходу.

(е) Дегидрофторирование с использованием 2,6-лутидина в присутствии каталитического количества DBU.

Смесь 5,0 г дигидропиридина и 2,13 г 2,6-лутидина нагревают при 143оС в течение 30 мин. Прибавляют две порции DBU и реакционную смесь нагревают в течение 1 ч и 30 мин, охлаждают и обрабатывают, как в части (b), с получением 4,23 г искомого продукта. Реакцию можно осуществлять при избытке 2,6-лутидина и каталитического количества DBU без растворителя или в присутствии толуола в качестве растворителя, получая аналогичные результаты.

П р и м е р 11 (прототип). Получение диэтил 2-(дифторметил)-4-изобутил-6-(трифторметил)-3,5-пиридиндикарбоксилата.

Смесь 10,0 г (0,0240 моль) диэтил [2,6-бис(трифторметил)-1,4-дигидро-4-изобутил/ 3,5-пиридиндикарбоксилата, 3,65 г (0,0240 моль) DBU и 150 мл ТГФ нагревают с обратным холодильником в течение 18 ч и концентрируют. Остаток растворяют в простом эфире и промывают разбавленной хлористоводородной кислотой, сушат (MgSO4) и концентрируют. Остаток перегоняют в кубе Kugelrohr под давлением 1 тор (1 мм рт.ст.) с получением 4,80 г (50%) искомого продукта.

Предложенный способ позволяет повысить выход до 83-100% против 80% в известном способе.

Формула изобретения

1. СПОСОБ ПОЛУЧЕНИЯ НИЗШЕГО ДИАЛКИЛОВОГО ЭФИРА 2-ДИФТОРМЕТИЛ-4-(2-МЕТИЛПРОПИЛ)-6-ТРИФТОРМЕТИЛ-3,5-ПИРИДИНДИКАРБОНОВОЙ КИСЛОТЫ дегидрофторированием соответствующего эфира 1,4-дигидро-2,6-бис-(трифторметил)-4- (2-метилпропил)-3,5-пиридиндикарбоновой кислоты путем обработки органическим основанием при повышенной температуре в среде инертного апротонного растворителя, отличающийся тем, что в качестве органического основания используют 1,4-диазобицикло(2,2,2)-октан при молярном соотношении его и эфира (0,5 - 1,0) : 1.

2. Способ по п.1, отличающийся тем, что 1,4-диазабицикло(2,2,2)-октан используют в виде водного раствора.

3. Способ по п.1, отличающийся тем, что в качестве апротонного растворителя используют бензол, толуол, ксилол, метилциклогексан, монохлорбензол и бутиронитрил.

4. Способ по п.1, отличающийся тем, что процесс осуществляют в безкислородных условиях.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к новым соединениям - ацилированным арилциклоалкиламинам формулы I в любой из их стереоизомерных форм или в виде их смеси в любом соотношении, или их фармацевтически приемлемым солям, где в формуле I: R1 представляет собой арил, необязательно замещенный одним или двумя одинаковыми или различными заместителями, выбранными из группы, включающей С1-С6-алкил и галоген; R2 представляет собой арил или гетероарил, представляющий собой остаток 5-6-членного ароматического моноциклического гетероцикла, содержащий 1-2 атома азота в качестве гетероатома и/или 1 атом серы или кислорода, или остаток 9-10-членного ароматического бициклического гетероцикла, содержащий 1-2 атома азота в качестве гетероатома, каждый из которых является незамещенным или содержит 1-3 одинаковых или разных заместителей, выбранных из группы, состоящей из галогенов, NH2, незамещенных С1-С10-алкила, C 1-С10-алкокси, С1 -С10-алкиламино и ди(С1 -С10-алкил)амино, и по меньшей мере, монозамещенного C1-С10-алкила, и т.д., n представляет собой 1, 2, 3 или 4

Изобретение относится к новым соединениям формулы I: где R1 представляет собой низший алкил или С3-С7-циклоалкил; Х представляет собой C(O) или SO2; m означает 0 или 1; R2 выбирают из группы, состоящей из низшего алкила, низшего галогеналкила, низшего алкоксиалкила, незамещенного C3-C7 -циклоалкила, низшего фенилалкила, где фенил является незамещенным или моно- или дизамещенным низшим алкилом, низшим алкокси, галогеном или низшим галогеналкилом, незамещенного пиридила или пиридила, моно- или дизамещенного низшим алкилом, галогеном или низшим галогеналкилом, и -NR3R4, или в том случае, когда Х представляет собой C(O),R2 также может представлять собой низший алкокси или низший алкоксиалкокси, или в том случае, когда m означает 1, R2 также может представлять собой незамещенный фенил или фенил, моно- или дизамещенный низшим алкилом, низшим алкокси, галогеном или низшим галогеналкилом, R3 представляет собой водород или низший алкил; R 4 выбирают из группы, состоящей из низшего алкила, С 3-С7-циклоалкила, С3-С7 -циклоалкила, замещенного фенилом, низшего С3-С 7-циклоалкилалкила, незамещенного фенила или фенила, моно- или дизамещенного низшим алкилом, низшим алкокси, галогеном или низшим галогеналкилом, и низшего фенилалкила, где фенил является незамещенным или моно- или дизамещенным низшим алкилом; или R 3 и R4 вместе с атомом азота, к которому они присоединены, образуют 4-, 5-, 6- или 7-членную гетероциклическую кольцевую систему, необязательно содержащую еще один гетероатом, выбранный из азота, причем указанная гетероциклическая кольцевая система является незамещенной или замещенной одной, двумя или тремя группами, независимо выбранными из низшего алкила, галогена и галогеналкила; и фармацевтически приемлемым солям этих соединений; за исключением 2,2-диметил-N-[6-(4-метилпиперазин-1-ил)пиридин-3-ил] пропионамида

Изобретение относится к амидным соединениям и их солям, способам их получения и пестицидным композициям, содержащим их в качестве активных ингредиентов

Изобретение относится к эфирам кислот, в частности к усовершенствованному способу получения низших алкиловых окси- или тиопроизводных 4-(низший алкил)-2,6-бис-(трифторметил)-(дигидро- или тетрагидро)-пиридин-3,5-дикарбоновых кислот, которые используют в качестве гербицидов

Изобретение относится к сульфонамидным соединениям формулы (1) или к их фармацевтически приемлемым солям, в которой А представляет собой фенил, необязательно замещенный от 1 до 2 атомами галогена, C1-6 алкильной группой, трифторметильной группой, С1-6 алкоксигруппой или -SCH3 группой, тиофенил, необязательно замещенный C1-C6 алкильной группой или атомом галогена, пиридинил, необязательно замещенный атомом галогена, нафталенил или дигидроинденил; R1 представляет собой следующие формулы (Rla) или (Rlb): [в формулах (Rla) и (Rlb) Ar1 представляет собой следующие формулы (Arla), (Arlb) или (Ar1c): (каждый R5 и R6 независимо представляет собой атом водорода, атом галогена, C1-6 алкильную группу, необязательно замещенную вплоть до трех атомов галогена, C1-6 низшую алкоксигруппу, необязательно замещенную вплоть до трех атомов галогена); Ar2 представляет собой следующие формулы (Ar2a), (Ar2b) или (Ar2c): (каждый R7 и R8 независимо представляет собой атом водорода, гидроксильную группу, атом галогена, C1-6 алкильную группу, необязательно замещенную вплоть до трех атомов галогена, или C1-6 низшую алкоксигруппу, необязательно замещенную вплоть до трех атомов галогена, аминогруппу, нитрогруппу, С2-6 ацильную группу, или R7 и R8 образуют вместе -СН2СН2О-; R9 представляет собой атом водорода или -J-COOR10; J представляет собой ковалентную связь, алкилен, содержащий от 1 до 5 атомов углерода, алкенилен, содержащий от 2 до 5 атомов углерода, или алкинилен, содержащий от 2 до 5 атомов углерода, где один атом углерода в упомянутых алкиленовых группах может быть заменен атомом кислорода, атомом серы, NR11, CONR11 или NR11CO в любом химически разрешенном положении; R11 представляет собой атом водорода; и R10 представляет собой атом водорода); и р равно 0 или 1]; R2 представляет собой C1-6 алкильную группу; каждый R3 и R4 независимо представляет собой C1-6 алкильную группу; * обозначает асимметрический атом углерода; и m равно целому числу от 1 до 3. Изобретение также относится к лекарственному средству для стимуляции секреции РТН на основе указанных соединений. Технический результат: получены новые соединения, которые могут найти применение в медицине для профилактики и/или лечения первичного остеопороза и/или вторичного остеопороза. 11 н. и 18 з.п. ф-лы, 15 табл., 14 пр.

Изобретение относится к способу получения 2-(пиридин-3-ил)тиазолов формулы (IV), где (A) каждый R1 представляет собой H; (B) R2 представляет собой (C1-C6)алкил; (C) R3 представляет собой H и (D) R4 представляет собой (C1-C6)алкил. Способ осуществляют путем (i) взаимодействия соединения (I) с соединением (IIa) с образованием соединения (IIb), где указанное взаимодействие проводят при температуре окружающей среды и при давлении окружающей среды в полярном протонном растворителе; (ii) взаимодействия соединения (IIb) с соединением (IIc) с образованием соединения (III), где указанное взаимодействие проводят при температуре окружающей среды и при давлении окружающей среды в полярном растворителе; и (iii) циклизации соединения (III) с использованием дегидратирующего реагента с образованием соединения (IV), где указанное взаимодействие проводят при температуре окружающей среды и при давлении окружающей среды в полярном апротонном растворителе. Указанный полярный протонный растворитель стадии a1 представляет собой муравьиную кислоту, н-бутанол, изопропанол, н-пропанол, этанол, метанол, уксусную кислоту, воду или их смесь. На стадии b соединение (III) циклизуют с использованием дегидратирующего реагента, выбранного из POCl3, H2SO4, SOCl2, P2O5, полифосфорной кислоты, п-толуолсульфоновой кислоты, трифторуксусного ангидрида или их смеси. Способ дополнительно включает галогенирование указанного R3 до F, Cl, Br или I. Технический результат – способ получения 2-(пиридин-3-ил)тиазолов в качестве промежуточных продуктов для синтеза пестицидных тиазоламидов. 10 з.п. ф-лы, 2 пр.

Изобретение относится к способу получения 2-(пиридин-3-ил)тиазолов. Способ включает (i) взаимодействие соединения (I) с соединением (II) на стадии получения соединения (III), где указанную реакцию проводят в полярном протонном растворителе при давлении окружающей среды, с последующей (ii) циклизацией соединения (III) с использованием дегидратирующего агента, с получением соединения (IV). Дегидратирующий агент выбирают из группы, состоящей из POCl3, H2SO4, SOCl2, P2O5, полифосфорной кислоты, п-толуолсульфоновой кислоты, трифторуксусного ангидрида или их смеси, и указанную циклизацию осуществляют при давлении окружающей среды и температуре от 60°C до 120°C, при этом (A) R1 представляет собой H; (B) R2 представляет собой (C1-C6)алкил; (C) R3 представляет собой H или (C1-C6)алкил; и (D) R4 представляет собой H, (C1-C6)алкил или циклопропил. Способ дополнительно включает галогенирование указанного R3 в соединении (IV) до F, Cl, Br или I в полярном растворителе при температуре от 0°C до температуры окружающей среды. Технический результат - способ получения 2-(пиридин-3-ил)тиазолов, предназначенных в качестве промежуточных соединений для синтеза пестицидных тиазоламидов. 6 з.п. ф-лы, 3 пр.
Наверх