Установка для получения низких температур

 

Использование: в криогенной технике для получения сверхнизких температур. Сущность изобретения: в вакуумной полости 2 гелиевого сосуда 1 Дьюара установлена камера, соединенная с баллонами газообразных азота, водорода и гелия и находящаяся в тепловом контакте с одноградусной пластиной 3, камерой 4 испарения, теплообменником 6 и камерой 5 растворения. 1 ил.

Изобретение относится к криогенной технике, в особенности к технике сверхнизких температуp.

Область применения - физика твердого тела, ядерная физика.

Известны установки для получения низких температур растворением 3Не в 4Не, состоящие из гелиевого сосуда Дьюара с азотным экраном и рефрижераторного модуля, содержащего размещенные в вакуумной полости холодную (одноградусную) пластину, камеры испарения, растворения и низкотемпературный теплообменник [1].

Пуск этих установок требует предварительного захолаживания рефрижераторного модуля до температуры ниже 1,5 К, необходимой для конденсации рабочего вещества - газообразной смеси 3Не-4Не. Для этого вначале в азотный экран гелиевого сосуда заливают жидкий азот, затем после охлаждения рефрижераторного модуля установки до азотной температуры заполняют гелиевый сосуд жидким гелием. После охлаждения модуля до гелиевой температуры включают откачку холодной пластины и конденсируют смесь 3Не-4Не, заполняя ею камеры испарения, растворения и низкотем- пературный теплообменник. Этим завершается пуск установки, занимающий обычно несколько суток.

Таким образом, процесс захолаживания связан с большими затратами времени, что является недостатком этих установок.

Известны установки, в которых для ускорения захолаживания используется теплообменный газ, который вводится в вакуумную полость рефрижераторного модуля [2].

Однако его использование не всегда оказывается возможным. В выбpанной в качестве пpототипа установке для получения сверхнизких температур растворением 3Не в 4Не, содержащей гелиевый сосуд Дьюара с азотным экpаном и pазмещенные в вакуумной полости сосуда холодную (одноградусную) пластину, камеры испарения, растворения и низкотемпературный теплообменник, с целью ускорения захолаживания установки введен байпасный управляемый клапан на линии подачи газовой смеси в рефрижераторный модуль в обход дросселю.

Недостатком прототипа является сложность и трудоемкость изготовления управляемого криогенного клапана и его невысокая надежность в работе. Кроме того, хотя введение этого клапана позволяет ускорить захолаживание установки, тем не менее затраты времени на ее пуск представляются все еще значительными.

Целью изобретения является повышение экономичности и надежности путем сокращения затрат времени на захолажива- ние и упрощение конструкции установки.

Поставленная цель достигается тем, что в вакуумной полости гелиевого сосуда установлен контейнер, заполненный сжатым газообразным криоагентом, находящийся в тепловом контакте с гелиевой ванной, холодной (одноградусной) пластиной, камерами испарения, растворения и низкотемпературным теплообменником, при этом контейнер может быть соединен капиллярной трубкой с внешней системой откачки и наполнения криоагентом, в качестве которого используются последовательно азот, водород и гелий.

На чертеже показана предлагаемая установка.

Установка состоит из гелиевого сосуда 1 Дьюара с азотным экраном, рефрижераторного модуля, размещенного в вакуумной полости 2 сосуда и состоящего из холодной (одноградусной) пластины 3, камеры 4 испарения, камеры 5 растворения, теплообменника 6, гелиевого экрана 7 и контейнера 8, находящегося в тепловом контакте с гелиевой ванной, камерами 4 и 5 и теплообменником 6. Тепловой контакт может быть осуществлен, например, с помощью медных проволочек 9, припаянных к контейнеру, камерам и теплообменнику.

Пуск установки происходит следующим образом.

При заполнении азотного экрана 2 жидким азотом в контейнер подают сжатый азот, который в процессе охлаждения контейнера ожижается в его верхнем более холодном торце и стекает вниз, охлаждая низ контейнера и контактирующие с контейнером 8 камеры 4 и 5 и теплообменник 7, затем, испаряясь на относительно "горячей" поверхности контейнера, вновь конденсируется в его верхней части и т. д. Таким образом, возникает интенсивная циркуляция криоагента в контейнере и теплопередача между холодной и горячими поверхностями контейнера и быстрое захолаживание камер 4 и 5 и теплообменника 7.

Этот процесс длится до тех пор, пока не выравняются температуры гелиевой ванны и рефрижераторного модуля. После охлаждения модуля до азотной температуры контейнер откачивают и заполняют его сжатым водородом. Затем гелиевый сосуд 1 заправляют жидким гелием. При этом в процессе заправки сосуда и охлаждения его от 80 К до 4,2 К водород конденсируется в контейнере и обеспечивает описанным образом охлаждение устройств рефрижераторного модуля вплоть до 15 К, после чего водород откачивают из контейнера и подают в контейнер сжатый газообразный гелий. Конденсируясь в контейнере 8, гелий обеспечивает интенсивное охлаждение устройств модуля вначале до 4,2 К, затем после включения откачки холодной пластины - до 1,5 К и ниже.

Необходимое количество криоагента, подаваемого в контейнер 8, определяется расчетным путем.

Расчеты показывают, что реализация предлагаемого изобретения позволяет увеличить мощность охлаждения до 0,5-50 Вт - в зависимости от температурного уровня и сократить длительность охлаждения установки в несколько раз без применения сложных, трудоемких и малонадежных в эксплуатации устройств.

Формула изобретения

УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ НИЗКИХ ТЕМПЕРАТУР растворением 3He в 4He, содержащая гелиевый сосуд Дьюара с азотным экраном и вакуумной полостью, в которой размещен рефрижераторный модуль, состоящий из последовательно установленных одноградусной пластины, камеры испарения, теплообменника и камеры растворения, отличающаяся тем, что, с целью повышения экономичности и надежности путем сокращения времени захолаживания, она снабжена баллонами с газообразными азотом, водородом и гелием и камерой, соединенной с баллонами, установленной в вакуумной полости и находящейся в тепловом контакте с гелиевой ванной, одноградусной пластиной, камерой испарения, теплообменником и камерой растворения.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к криогенной технике и может быть использовано в магнитокалорических рефрижераторах для получения температур ниже 20 К

Изобретение относится к способу и устройству для получения сверхнизких температур, ниже примерно 1 К, а именно 0,1 К

Изобретение относится к криогенной технике, а именно к технике сверхнизких температур, и может быть использовано в области физики твердого тела, ядерной физике, космической технике и холодильной промышленности

Изобретение относится к криогенной технике, в частности к технике низких и сверхнизких температур
Наверх