Способ плазменного травления тонких пленок

 

Использование: в способе плазменного травления тонких пленок, применяемом в технологии производства изделий электронной техники БИС и СБИС для повышения производительности прецизионного травления путем увеличения скорости травления за счет повышения плотности ионного и нейтрального потока химически активных частиц. Сущность изобретения: способ включает загрузку подложек со сформированием на них пленками в реактор на подложко-держатель, создание в реакторе вакуума и напуск рабочей атмосферы до давления 10-2- 5 мм рт.ст. наложение магнитного поля с напряженностью 300 - 2000 Э, возбуждение плазмы с плотностью не менее 108 см-3, обработку подложек на подложкодержателе, находящемся либо под плавающим патенциалом, либо под напряжением смещения, причем на область плазмы подают по крайней мере один электрический импульс с амплитудой напряжения в пределах 500В - 3 кВ длительностью = 10-4 - 10-2 c . 5 з.п. ф-лы, 3 ил.

Изобретение относится к технологии производства изделий электронной техники, в частности к способам плазменного травления тонких пленок микроэлектроники, и может быть использовано в производстве БИС и СБИС.

Наблюдаемое в последнее время резкое усложнение конструкций современных ИС обуславливает возрастание плотности размещения приборов и предъявляет все более высокие требования к технологии их изготовления: формированию элементов менее 1 мкм с точностью воспроизведения размеров 0,05 мкм, управлению профилем травления, минимальной степени повреждения подложки при высоких равномерности и скорости травления, т.е. в основном к процессам плазменного травления. Установлено, что в настоящее время наиболее перспективными способами сухого плазменного травления с точки зрения удовлетворения данных требований являются способы ВЧ- и СВЧ-магнетронного травления, так как они обеспечивают высокие значения плотности плазмы n>1010 см-3 и ионного потока на подложку j>1 мА/см при низкой энергии ионов Еи<100 эВ и соответственно высокие скорости травления тонких пленок материалов ИС при низком уровне радиационных нарушений. В частности, требования высокой плотности плазмы и ионного потока обусловлены такими экспериментально установленными фактами, как линейная зависимость скорости процессов ионно-стимулированного травления от плотности ионного потока (коэффициент выхода для процесса анизотропного травления Si составляет 4-5 ат./ион) при оптимальном потоке нейтральных химически активных частиц (ХАЧ).

Известен способ плазменного травления тонких пленок [1], включающий загрузку подложек со сформированными на них пленками в реактор, создание в реакторе рабочей атмосферы, возбуждение СВЧ-разряда в скрещенных электрическом и магнитном полях и инжектирование в зону обработки подложек плазмы, с помощью которой производится травление тонких пленок путем взаимодействия ХАЧ продуктов ионизации и диссоциации галогенсодержащих газов с поверхностью пленок. Процесс обеспечивает высокую прецизионность травления при минимальной степени радиационных нарушений функциональных слоев ИС.

Однако данный способ имеет следующие недостатки. В СВЧ-плазме длины волн, возбуждаемых в резонаторе, соизмеримы с размерами разрядной камеры, что приводит к пространственной неоднородности травления пленки по всей площади подложки. Для процесса сухого травления в СВЧ-плазме очень сложно достичь одновременно высокой скорости травления по всей поверхности подложки диаметром 100 мм и выше. Высокая плотность СВЧ-плазмы n 1011 см-3 достигается при давлении менее 10-1 Па, что ограничивает поток химически активных нейтральных частиц и соответственно скорость сухого травления. Максимальная плотность плазмы в ЭЦР-СВЧ-реакторах составляет 1012 см-3, что также ограничивает скорость травления тонких пленок по ионному потоку.

Наиболее близким к изобретению техническим решением является способ плазменного травления тонких пленок [2] , согласно которому подложки со сформированными на них пленками загружаются в реактор на изолированный подложкодержатель, находящийся под плавающим потенциалом в области плазменного разряда между электродами, а плазма возбуждается скрещенными ВЧ-электрическим и магнитным полями, расположенными в плоскости, параллельной подложке. Кроме того, допускаются дополнительное управление потенциалом подложки за счет подачи на нее напряжения и использование электромагнита под подложкодержателем для повышения эффективности травления. Рабочие давления регулируются в пределах 5 10-4-5 10-2 мм рт.ст. Данный способ при высокой прецизионности и низком уровне радиационных нарушений обеспечивает более высокую скорость анизотропного травления Si на уровне до 1 мкм/мин.

Тем не менее данный способ имеет некоторые существенные недостатки. Плотность плазмы не превышает 1011 см-3, что сдерживает возможность повышения скорости процессов ионно-стимулированного травления тонких пленок материалов ИС. Ограничение по скорости травления также обусловлено используемым диапазоном давления 5 10-4-5 10-2 мм рт.ст., сдерживающим возможности повышения потока нейтральных ХАЧ.

Задачей, решаемой изобретением, является повышение производительности процесса травления путем увеличения скорости травления тонких пленок за счет повышения плотности ионного и нейтрального потока ХАЧ.

Решение поставленной задачи достигается тем, что по способу плазменного травления тонких пленок, включающему загрузку подложек со сформированными на них пленками в реактор на подложкодержатель, создание в реакторе вакуума и напуск рабочей атмосферы, формирование в реакторе магнитного поля и возбуждение плазмы газового разряда, плазму возбуждают с плотностью не менее 108 см-3, на область плазмы подают по крайней мере один электрический импульс с величиной напряжения в пределах 500 В - 3 кВ и длительностью 10-4-10-2 с, напряженность формируемого магнитного поля устанавливают в пределах 300-2000 Э, а давление рабочей атмосферы в реакторе поддерживают в диапазоне 10-2 - 5 мм рт.ст.

Для достижения высоких значений скорости травления тонких пленок при травлении на большие глубины (например, канавки в Si) на область плазмы подают последовательность импульсов с периодом следования не менее шести длительностей импульса - 6 имп, возбуждение плазмы осуществляют путем приложения электрического поля либо путем воздействия ультрафиолетового или рентгеновского излучения, подложкодержатель охлаждают до отрицательных температур жидким азотом с продувкой гелием под подложкой, а для преодоления пороговых значений энергии активации процесса на подложкодержатель подают ВЧ- либо постоянное смещение.

Плазменное травление тонких пленок начинают с предионизации и диссоциации ионообразующего рабочего газа в плазме, возникающей под воздействием распределенных электрического (ВЧ- либо постоянного) либо другого электромагнитного излучения и магнитного полей напряженностью 300-2000 Э, которая обеспечивает необходимую в дальнейшем предварительную плотность плазмы на уровне не менее 108 см-3. Далее осуществляют наложение на плазму электрического импульса общей длительностью 10-4-10-2 с, причем на первой стадии импульса длительностью не более 10-4 с осуществляют подачу напряжения от генератора импульсных токов на основе искусственно длинной линии в диапазоне 500 В - 3 кВ, когда токи не превышают 100 мА, что на второй стадии импульса приводит к образованию нового типа разряда с плотностью плазмы не менее 1013 см-3, причем напряжение на разряде снижается до 100 В, а ток достигает значений в диапазоне 10 А - 2 кА (фиг. 1) в зависимости от вкладываемой мощности. Существенным достоинством способа является продолжение существования данного разряда после снятия питания от генератора с длительностью жизни 5 имп (фиг. 2), где имп - длительность электрического импульса. Плотность ионного тока на образец достигает 1-5 А/см2 при средней энергии ионов 10-50 эВ. Соответственно достигается средняя скорость плазменного анизотропного травления кремния 5-10 мкм/мин, что недостижимо во всех известных технических решениях. Плотность ионного тока на образец диаметром 150 мм имеет неравномерность в нашем случае не более 2%.

Проведенные патентные исследования не выявили решений, из которых могло быть установлено влияние отличительных признаков патентуемого решения на достижение ожидаемого технического результата. Поэтому следует считать, что заявляемое решение соответствует критерию "изобретательский уровень".

На фиг. 1 приведено изменение ВАХ импульса для двух стадий разряда; на фиг. 2 - изменение во времени параметров импульса и разряда; на фиг. 3 - изменение параметров разряда от давления.

Способ плазменного травления тонких пленок может быть реализован согласно следующему примеру.

Для формирования конденсаторов памяти большой емкости необходимо формирование канавок в кремнии на глубину 10-15 мкм шириной 1-1,5 мкм. С этой целью кремниевую подложку (КДБ-1) диаметром 100 мм, покрытую защитной маской фоторезиста ФП 051К с проявленным в нем топологическим рисунком, загружали в реактор модернизированной плазменной установки 08ПХТ - 125/50 - 008 на охлаждаемый жидким азотом до температуры 140 К подложкодержатель. В реакторе создавали вакуум 10-1 Па, после чего напускали гексафторид серы (SF6) до рабочего давления 10 Па. Магнитное поле, создаваемое вблизи катода постоянным магнитом, составляло 700 Э. На катод через заградительный фильтр подавали ВЧ-напряжение мощностью 600 Вт, в результате чего зажигался разряд плотностью 1010 см-3. Через несколько секунд на катод подавали последовательность импульсных токов на основе искусственно длинной линии. Для травления использовали импульсы со следующими параметрами: общая длительность импульсов 10-3 с, длительность переднего фронта импульса 10-4 с, начальное напряжение импульса 1 кВ, ток разрядa в импульсе 1 кА, длительность разряда 6 x 10-3 с, период следования импульсов 10-1 с.

Подложкодержатель во время разряда находился под плавающим потенциалом.

Характер изменения параметров импульса отражен на фиг. 1 и 2. Время травления кремния составляло 2 мин. Анализ результатов травления проводили с помощью измерений на сканирующем электронном микроскопе. Результаты измерений были следующими: селективность ФП - 051К=50; Si/SiO2=70, уход размеров под маску 1000 А, глубина травления 12 мкм, клин травления в среднем 85-87о, средняя скорость тра- вления 6 мкм/мин, неравномерность тра- вления по подложке диаметром 100 мм 3%.

В приведенном выше примере использованы конкретные значения параметров патентуемого способа травления. Однако удовлетворительные результаты достижимы и при других значениях этих параметров, не выходящих за пределы, приведенные в формуле изобретения. Экспериментально доказано, что при снижении плотности ниже 108 см-3 невозможно получение разряда высокой плотности (1013 см-3) при наложении электрических импульсов высокого напряжения. Уменьшение импульса высокого напряжения ниже 500 В также не приводит к образованию разряда данного типа, а увеличение напряжения выше 3 кВ приводит к значительному снижению энергетической эффективности приложенного импульса из-за уменьшения сечения ионизации с ростом энергии электронов. Уменьшение длительности импульса ниже 10-4 с приводит, как показано на фиг. 2, к снижению вероятности образования разряда данного типа и увеличению вероятности распылительного режима, а увеличение длительности более 10-2 с - к переходу в дуговой режим вследствие развития ионизационно-перегрузочной неустойчивости. Снижение давления ниже 10-2 мм рт.ст., как показано на фиг. 3, приводит к росту напряжения разряда до 300 В и выше, уменьшение ионного тока - к интенсивному распылению катода, а увеличение давления выше 5 мм рт.ст. - к переходу разряда в объемный режим (процессы рекомбинации преобладают над процессами диффузии) с последующим контрагированием и образованием дуговых привязок.

Уменьшение напряженности распределенного магнитного поля ниже 300 Э приводит к уменьшению вероятности образования разряда высокой плотности, а увеличение напряженности выше 2000 Э - к увеличению неравномерности ионного потока на подложку выше 10%.

Данный тип разряда наблюдался для различных типичных рабочих газов (аргон, гелийводородная смесь, гексафторид серы, хладон - 14), поэтому ограничения по составу рабочей атмосферы отсутствуют.

Проведенные эксперименты показали, что предложенный способ обеспечивает качественное травление кремния с высокой скоростью, что предполагают его эффективное применение в промышленном производстве. В настоящее время проводятся подготовительные работы по применению способа в серийном производстве ИС.

Формула изобретения

1. СПОСОБ ПЛАЗМЕННОГО ТРАВЛЕНИЯ ТОНКИХ ПЛЕНОК, включающий загрузку подложек со сформированными на них пленками в реактор на подложкодержатель, создание в реакторе вакуума и напуск рабочей атмосферы, наложение магнитного поля на рабочую область реактора, возбуждение плазмы и обработку подложек на подложкодержателе, находящемся либо под плавающим потенциалом, либо под напряжением смещения, отличающийся тем, что напуск рабочей атмосферы производят до давления 10-2 - 5 Тор, магнитное поле накладывают с напряженностью 300 - 2000 Э и после возбуждения плазмы с плотностью не менее 108 см-3 подают на область плазмы по крайней мере один электрический импульс с амплитудой напряжения в пределах 500 В - 3 кВ длительностью имп= 10-4-10-2 c. 2. Способ по п.1, отличающийся тем, что на область плазмы подают последовательность импульсов с периодом следования не менее 6имп . 3. Способ по п.1, отличающийся тем, что возбуждают плазму путем приложения электрического поля.

4. Способ по п.1, отличающийся тем, что возбуждают плазму путем воздействия УФ- или рентгеновского излучения.

5. Способ по п.1, отличающийся тем, что подложку во время обработки охлаждают до отрицательных температур.

6. Способ по п.1, отличающийся тем, что при обработке подложкодержатель находится либо под постоянным, либо под ВЧ-смещением.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к производству микроэлектронных приборов, в частности к устройствам для реализации процессов плазмохимической обработки полупроводниковых пластин, а более конкретно, к плазмохимическим реакторам баррельного типа для травления и удаления функциональных слоев с поверхности микроэлектронных структур на пластинах и их очистки от органических и неорганических загрязнений

Изобретение относится к микроэлектронике и может быть использовано в полупроводниковом производстве для селективного, прецизионного травления кремний-металлсодержащих слоев

Изобретение относится к полупроводниковой технике и может быть использовано для полирования полупроводниковых частиц

Изобретение относится к полупроводниковой технике и может быть использовано для крепления полупроводниковых пластин при полировании

Изобретение относится к области ионно-плазменной обработки и может найти применение в микроэлектронике при производстве интегральных схем

Изобретение относится к полупроводниковой технике и направлено на повышение технологичности процессов механической обработки, выхода годных пластин, в частности, из материалов группы A3B5 в случае получения пластин с допуском диаметра 0,3 мм и менее

Изобретение относится к области микроэлектроники, в частности, к технологии изготовления полупроводниковых структур, являющихся элементной базой функциональной микроэлектроники и может быть использовано в технологии изготовления интегральных газовых датчиков с тонкими мембранами /1- 5 мкм/, а также мембран для рентгеновских фотошаблонов

Изобретение относится к полупроводниковой электронике и может быть использовано в производстве полупроводниковых лазерных диодов и светодиодов

Изобретение относится к полупроводниковой технике и может быть использовано при изготовлении полупроводниковых структур, получаемых:- путем механического утонения структур с нерабочей стороны структур до фиксированной толщины, например до толщины 6-20 мкм;- путем термического соединения (сварки через окисел) двух пластин разной проводимости, легирования и кристаллографической ориентации и механического утонения одной из пластин до фиксированной толщины, например до толщины 6-10 мкм;- путем механической или химико-механической доводки структур для выравнивания планарного рельефа, удаления дефектов с использованием Stop-процесса

Изобретение относится к способам термохимического травления тугоплавких химически стойких материалов, в частности к методам локального травления их поверхности, например, с использованием локального лазерного облучения

Изобретение относится к технике полупроводникового производства и может быть использовано для формирования многоуровневых межсоединений СБИС, в частности, для планаризации поверхности межслойного диэлектрика, межуровневого диэлектрика, для получения вертикальных проводников, диффузионно-барьерных слоев и адгезионных слоев на операциях подготовки поверхности пластин, например, при химико-механической полировке с последующей отмывкой их (гидромеханической, мегазвуковой и др.)

Изобретение относится к электронной промышленности, а именно к фотошаблонным заготовкам (ФШЗ), предназначенным для формирования рисунка микроизображения при изготовлении интегральных схем

Изобретение относится к области оптоэлектроники и может быть использовано при изготовлении пластин из слитков или булей монокристаллов, например, сапфиров

Изобретение относится к производству изделий электронной техники и может быть использовано, например, на операциях очистки полупроводниковых пластин с помощью щеток и мегазвука
Наверх