Способ изготовления электрода

 

Использование: при изготовлении электромеханических твердоэлектролитных датчиков концентрации кислорода в различных кислородсодержащих газах, например отходящих газах ТЭЦ, выхлопных газах ДВС и т.д. Сущность изобретения: паста для вжигания состоит из твердого электролита, пластины и углерода. Вжигание проводят вначале в защитной среде при 1300 - 1650°С, а затем в окислительной при 900 - 1400°С.

Изобретение относится к области газового анализа и газоаналитическому приборостроению, в частности к технологии изготовления электродов на твердом электролите из стабилизированного диоксида циркония, и может быть использовано при производстве электрохимических твердоэлектролитных датчиков концентрации кислорода в различных кислородсодержащих газах, например в отходящих газах ТЭЦ, выхлопных газах ДВС и т.д.

Актуальной задачей при серийном изготовлении и промышленном использовании является технология изготовления электродов датчиков кислорода с твердоэлектролитным чувствительным элементом, обеспечивающая получение требуемого технического результата, а именно высокой эксплуатационной надежности работы электродов в составе датчиков кислорода, увеличение электрохимической активности электрода (пористости, электросопротивления, адгезии и пр.).

Указанным требованиям в наибольшей степени удовлетворяют электроды на основе благородных металлов, полученные вжиганием порошковой пасты из связующего, твердого электролита чувствительного элемента и порошка благородного металла.

Существуют различные способы получения электродов датчиков кислорода на твердоэлектролитном чувствительном элементе из диоксида циркония методами спекания паст, пиролиза сложных соединений, электрохимического осаждения, вакуумного напыления и т.д.

Важной задачей при промышленном применении датчиков кислорода является технология изготовления электродов к ним, обеспечивающая достижение требуемого технического результата - высокой эксплуатационной надежности работы электродов в составе датчиков, особенно при использовании датчиков в агрессивных средах отходящих газов ТЭЦ или выхлопных газах ДВС.

Частично решает эту техническую задачу известный способ изготовления электрода электрохимического твердоэлектролитного датчика кислорода на основе стабилизированного диоксида циркония путем вжигания пасты из смеси порошков платины и твердого электролита [1].

Указанный способ изготовления электродов не обеспечивает при их эксплуатации в составе датчиков кислорода эксплуатационную надежность и необходимую электрохимическую активность электродов.

Из известных способов изготовления электродов электрохимического датчика кислорода с твердоэлектролитным чувствительным элементом на основе стабилизированного диоксида циркония наиболее близким к изобретению является способ изготовления, заключающийся в нанесении на рабочую поверхность чувствительного элемента пасты из смеси порошка платины и порошка твердого электролита и последующего вжигания пасты [2].

По этому способу на чувствительный элемент наносят пористые электроды, выполненные из порошков платины и стабилизированного оксида циркония с отношением платины к оксиду циркония 2-10. Для изготовления таких пористых электродов на чувствительный элемент из оксида циркония наносят пасту из порошка платины, порошка диоксида циркония со средней величиной зерен меньше 0,5 мкм и связующего, а затем обжигают при температуре 1200-1350оС.

Указанная выше совокупность существенных признаков недостаточна для достижения требуемого технического результата, а именно получения электродов на твердоэлектролитном чувствительном элементе, обладающих высокой эксплуатационной надежностью.

Изобретение позволяет устранить этот недостаток.

Способ изготовления электрода электрохимического датчика кислорода с твердоэлектролитным чувствительным элементом на основе стабилизированного диоксида циркония включает нанесение на его рабочую поверхность пасты из смеси порошка платины и порошка твердого электролита и последующее вжигание пасты, при этом согласно изобретению в состав пасты вводят углерод при следующем соотношении компонентов, мас.%: Твердый электролит 4-80 Платина 10-86 Углерод 10-50, а вжигание проводят вначале в защитной среде при 1300-1650оС, а затем в окислительной при 900-1400оС.

Возможность промышленного выполнения способа подтверждена конкретным примером.

На твердоэлектролитную таблетку (одна из форм выполнения чувствительного элемента) из стабилизированного диоксида циркония состава ZrO2 .Y2O3 диаметром 10 мм и высотой 2 мм наносили пасту с канифольной связкой следующего состава, мас.%: Твердый электролит (ZrO2 .Y2O3) 12 Платина 60 Углерод Остальное В качестве защитной среды использовали аргон и проводили на первой стадии вжигание при 1600оС в течение 5 ч, после чего на второй стадии вжигания осуществляли выдержку чувствительного элемента с нанесенным электродом на воздухе в течение 24 ч при 1100оС.

Полученный таким образом электрод имел открытую пористость 40% и электросопротивление при комнатной температуре менее 1 Ом. Обобщенным параметром, характеризующим электрохимическую активность электрода, является нижняя граница температур датчика, определяемая экспериментально методом э.д.с. по результатам метрологических испытаний датчика из условия, когда среднее ионное число переноса 0,98. Нижний температурный порог работы электрода, изготовленного по данному способу, достигал 270оС по сравнению с 330оС по наиболее близкому аналогу, что говорит об увеличении его электрохимической активности.

Изготовленный данным способом электрод датчика кислорода, проверенный в промышленных условиях, показал, что он отвечает требуемому техническому результату - повышенной эксплуатационной надежности.

Формула изобретения

СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОДА электрохимического датчика кислорода с твердоэлектролитным чувствительным элементом из стабилизированного диоксида циркония путем нанесения на его рабочую поверхность пасты из смеси порошков платины и твердого электролита и последующего вжигания пасты, отличающийся тем, что в состав пасты дополнительно вводят углерод при следующем соотношении компонентов, мас.%: Твердый электролит - 4 - 80 Платина - 10 - 86 Углерод - 10 - 50 а вжигание проводят вначале в защитной среде при 1300 - 1650oС, а затем в окислительной при 900 - 1400oС.



 

Похожие патенты:

Изобретение относится к контрольноизмерительной технике, в частности к датчикам контроля параметров газовых сред, и може.т найти применение при измерении концентрации двуокиси углерода в различных газовых смесях

Изобретение относится к электроизмерительной технике, в частности к датчикам контроля параметров газовых сред, и может быть использовано для определения концентрации хлора в различных газовых смесях Изобретение повышает быстродействие датчика при работе в области комнатных температур

Изобретение относится к аналитическому приборостроению

Изобретение относится к электрохимическому датчику для определения концентрации газа, содержащему корпус, измерительный электрод, содержащий каталитически активный материал, который обладает способностью вызывать превращение анализируемого газа, противоэлектрод, содержащий углеродный материал с электрохимически активными поверхностными соединениями, которые могут обратимо окисляться или восстанавливаться, и электролит, находящийся в контакте с измерительным электродом и противоэлектродом, при этом углеродный материал в противоэлектроде имеет удельную поверхность по меньшей мере 40 м2/г

Изобретение относится к потенциометрическим измерениям концентрации ионов в растворах, а именно к сравнительному рН-электроду, содержащему корпус, расположенные в корпусе электролит, ионопроводящую мембрану, разделяющую электролит и исследуемую среду, и помещенный в электролит чувствительный элемент, при этом электролит выполнен в виде кристаллогидрата NH4Ca(NO3)3nH2O, полученного реакцией обмена Ca(OН)2 с насыщенным раствором NH4NO3

Изобретение относится к области промышленной теплоэнергетики, в частности, к топкам котельных агрегатов и промышленных печей

Изобретение относится к ионоизбирательным мембранам, более конкретно к ионоизбирательной керамической мембране с протонной проводимостью, способной к работе в условиях высоких температур

Изобретение относится к высокотемпературной электрохимии, а более конкретно к конструкциям газодиффузионных ячеек электрохимических устройств с твердым электролитом, и может быть использовано в конструкциях топливных элементов, в электролизерах, датчиках активности кислорода

Изобретение относится к высокотемпературной электрохимии, а более конкретно к конструкциям газодиффузионных ячеек электрохимических устройств с твердым электролитом, и может быть использовано в конструкциях топливных элементов, в электролизерах, датчиках активности кислорода

Изобретение относится к газовому анализу и может быть применено в аналитической химии для определения ароматических аминов в воздухе

Изобретение относится к технике проведения анализа газовой фазы и может быть использовано при анализе качества порошкообразных, твердых веществ (например, чая, кофе, табака, табачных изделий)

Изобретение относится к измерительной технике и может быть использовано в металлургии, энергетике, химической промышленности для определения активности кислорода в различных средах

Изобретение относится к аналитической химии и приборостроению и может быть использовано как в лабораторной практике, так и в различных отраслях промышленности, в частности на тепловых электростанциях, где остро встают проблемы экологии, энергосбережения и экономии топлива, в других случаях, где требуется оптимизация процессов горения с минимальными выбросами окиси углерода
Наверх