Лазер на парах металлов

 

Использование: при разработке импульсных источников света с высокой концентрацией паров металлов с частотами в сотни и тысячи герц, в частности при создании лазеров на самоограниченных переходах в парах металлов. Сущность изобретения: между двумя коаксиальными диэлектрическими трубками установлена электропроводная спираль 3 из рабочего вещества, каждый виток которой разрезан на n равных частей, расположенных друг от друга на расстоянии, необходимом для возникновения искрового разряда между ними, внутренняя диэлектрическая трубка 7 выполнена с отверстиями 9, расположенными напротив искровых разрядных промежутков, и с электродами, размещенными на ее торцах. 1 ил.

Изобретение относится к квантовой электронике и может быть использовано при разработке источников света на парах металлов, в частности лазеров на самоограниченных переходах.

Известны конструкции лазеров, в которых для получения генерации достаточная концентрация атомов рабочего металла достигается после его разогрева до жидкой фазы в специальной печи либо путем саморазогрева в разряде [1].

Область применения таких лазеров ограничена набором металлов, для которых необходимая упругость паров достигается при температуре не выше 1700оС. Для получения генерации в парах тугоплавких металлов используется метод импульсного испарения металла с поверхности при инициировании искрового разряда через линейную последовательность зазоров между пластинками рабочего металла.

Конструктивно газоразрядная трубка состоит из стеклянной трубки, заполненной буферным газом, кварцевой подложки, вдоль которой в ряд одна за другой с небольшим зазором расположены пластинки из рабочего металла, рабочих электродов и выходных окон. При подаче на рабочие электроды высоковольтного сильноточного импульса в каждом зазоре инициируется искровой разряд и образуется плазма паров металла: атомы исходного материала испаряются с поверхности катода, возбуждаются и ионизируются, расширяясь в объеме в буферный газ. Этот источник может быть использован для получения плазмы практически любых металлов, в том числе тугоплавких, для которых непригодны традиционные способы получения паров путем термического нагрева.

Недостатком такой газоразрядной трубки является неоднородное по объему распределение атомов металла в разряде, что ухудшает генерационные характеристики лазера.

Наибольшая концентрация атомов металла достигается в зазорах между пластинками. По мере расширения плазменного сгустка концентрация атомов убывает. Кроме того, в местах перекрытия плазменных сгустков концентрация несколько выше.

Наиболее близкой к изобретению по технической сущности является газоразрядная трубка лазера на парах металлов [2], содержащая газоразрядную камеру с выходными окнами на торцах и рабочим веществом, теплоизолятор, рабочие электроды и нагревательный элемент, выполненный в виде одного накального распределенного электрода, расположенного внутри газоразрядной камеры по всей ее длине, концы которого через высоковольтные вводы подключены одновременно к источнику высокого импульсного напряжения и к источнику накала. При этом распределенный электрод выполнен в виде спирали, внутренняя часть которой является газоразрядным каналом. Такая газоразрядная трубка позволяет получить однородное распределение параметров плазмы по объему.

Недостатком данной газоразрядной трубки является ограничение эксплуатационных возможностей горизонтальным положением вследствие наличия в канале жидкого металла. Кроме того, лазер инерционен вследствие необходимости затрат энергии и определенного времени для разогрева металла до рабочей температуры.

Целью изобретения является расширение эксплуатационных возможностей лазера за счет произвольной пространственной ориентации и ускоренный выход на рабочий режим.

Цель достигается тем, что в лазер на парах металлов, содержащий газоразрядную трубку с рабочими электродами и электропроводной спиралью, расположенной внутри разрядной трубки по всей ее длине коаксиально с ней и выполненной из рабочего вещества, высоковольтный источник импульсного напряжения, соединенный с концами спирали, введены дополнительный высоковольтный источник импульсного напряжения и две коаксиально расположенные диэлектрические трубки, при этом электропроводная спираль закреплена между диэлектрическими трубками и выполнена так, что каждый виток образован из не менее двух равных по величине отрезков, расположенных друг от друга с зазором, образующим искровой разрядный промежуток, внутренняя диэлектрическая трубка выполнена с отверстиями, расположенными напротив искровых разрядных промежутков, разрядные электроды размещены на торцах внутренней диэлектрической трубки и соединены с дополнительным высоковольтным источником импульсного напряжения.

На чертеже изображен лазер на парах металлов, общий вид.

Газоразрядная трубка лазера на парах металлов содержит вакуумноплотную камеру 1 с буферным газом и выходными окнами 2 на торцах, внутри которой по всей ее длине расположена спираль 3 из рабочего металла, внутренняя часть которой является газоразрядным каналом. Концы спирали 3 через высоковольтные вводы 4 подключены к источнику 5 высокого напряжения. Каждый виток спирали 3 состоит из n 2 равных отрезков, расположенных друг от друга с зазором 6, необходимым для возникновения искрового разряда между ними. Шаг спирали 3 задается из расчета обеспечения однородности плазмы паров металла внутри газоразрядного канала. Спираль 3 установлена между двумя коаксиально расположенными диэлектрическими трубками 7, 8, при этом во внутренней трубке 7 выполнены отверстия 9 напротив зазоров 6 спирали 3. Рабочие электроды 10 подключены через высоковольтные вводы 11 к источнику 12 высокого короткоимпульсного напряжения с регулируемой задержкой во времени относительно импульса искрового разряда.

Высоковольтные источники 5 и 12 импульсного напряжения выполнены из высоковольтного выпрямителя, модулятора на тиратроне ТГИ1-100/8 и коммутирующего элемента - водородного тиратрона ТГИ1-1000/25.

Работает газоразрядная трубка следующим образом.

При подаче на электрические вводы 4, соединенные с концом спирали 3, расположенной между двумя коаксиальными диэлектрическими трубками 7, 8, высоковольтного сильноточного импульса в зазорах 6 между отрезками спирали инициируется искровой разряд, вследствие чего формируется плотная плазма паров металла, которая распространяется через отверстия 9 во внутренней трубке 7 в газоразрядный канал. Размеры зазоров 6 определяются условиями возникновения искрового пробоя в инертном газе между отрезками спирали.

Для возбуждения атомов металла в газоразрядном канале, образовавшихся при искровом разряде, на рабочие электроды 10 через высоковольтные вводы 11 подается короткий высоковольтный импульс с источника 12 напряжения, вследствие чего возникает однородный газовый разряд по всей длине газоразрядного канала. Излучение выводится через выходные окна 2 на торцах газоразрядной камеры 1.

Изготовлен и испытан образец предлагаемой газоразрядной трубки лазера на парах меди. Газоразрядная камера выполнена из стеклянной герметичной трубки диаметром 35 мм и длиной 350 мм и наполнена чистым гелием до давления 150 мм рт.ст. Спираль выполнена из медной проволоки диаметром 1,5 мм и содержит 37 равных отрезков, которые образуют 36 разрядных промежутков с зазором 1 мм. Шаг спирали составляет 10 мм. Отрезки спирали закреплены между двумя кварцевыми трубками (схема крепления не принципиальна). Диаметр внешней трубки составляет 15 мм, внутренней трубки - 13 мм. Диаметр отверстий на внутренней кварцевой трубке равен 2 мм.

При прохождении первого импульса тока длительностью 1-2 мкс в зазорах между отрезками спирали формировались искровые разряды с образованием плазмы паров меди. Размеры факелов разлетающейся плазмы 10 мм. Объемный разряд вдоль газоразрядной трубки создавался при прохождении между крайними электродами короткого импульса тока длительностью 200-300 нс, который следует через несколько микросекунд после первого сильноточного импульса тока. Излучение плазмы регистрировалось спектральным прибором с ФЭУ и осциллографом.

Предлагаемая газоразрядная трубка лазера на парах металлов обладает по сравнению с известными расширенными эксплуатационными возможностями, возможностью работы в любом положении с быстрым выходом на рабочий режим одновременно с однородным распределением параметров импульсной плазмы паров металла в объеме газоразрядного канала.

Формула изобретения

ЛАЗЕР НА ПАРАХ МЕТАЛЛОВ, содержащий разрядную трубку с рабочими электродами и электродной спиралью, расположенной в разрядной трубке по всей ее длине коаксиально с ней и выполненной из рабочего вещества, основной высоковольтный источник импульсного напряжения, соединенный с концами спираль, отличающийся тем, что, с целью расширения эксплуатационных возможностей путем обеспечения произвольной пространственной ориентации и ускоренного выхода на рабочий режим, в лазер введены дополнительный высоковольтный источник импульсного напряжения и две коаксиальные диэлектрические трубки, электропроводная спираль закреплена между диэлектрическими трубками и выполнена так, что каждый виток образован из не менее двух равных по длине отрезков, расположенных друг от друга с зазором, образующим искровой разрядный промежуток, внутренняя диэлектрическая трубка выполнена с отверстиями, расположенными напротив искровых разрядных промежутков, при этом рабочие электроды размещены на торцах внутренней диэлектрической трубки и соединены с дополнительным высоковольтным источником импульсного напряжения.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к квантовой электронике и может быть использовано в лазерах на парах металлов

Изобретение относится к обл.&.с.-и квантовой электроники и может бьп ь использовано нри разработке лазеров на парах веществ

Изобретение относится к области квантовой электроники и может быть использовано при конструировании газовых лазеров на парах химических элементов с полым катодом

Изобретение относится к области квантовой электроники и может быть использовано при конструировании газовых лазеров на парах химических элементов

Изобретение относится к квантовой электронике и может быть использовано при производстве лазеров непрерывного действия на парах металлов

Изобретение относится к квантовой электронике и может быть использовано при разработке лазеров на парах химических элементов

Изобретение относится к лазерной технике, а именно к лазерам на парах металлов

Изобретение относится к квантовой электронике и может быть использовано при разработке лазеров на парах металлов и их соединений для целей медицины, микроэлектронных технологий, навигации, научных исследований, зондирования атмосферы

Изобретение относится к квантовой электротехнике и может быть использовано в качестве схемы возбуждения лазеров на парах металлов

Изобретение относится к лазерной технике и может быть использовано для создания и поддержания требуемой концентрации галогеноводорода в активной области газоразрядной трубки

Изобретение относится к квантовой электронике и может быть использовано при разработке активных элементов лазеров на парах галогенидов металлов, например, бромида меди

Изобретение относится к лазерной технике. Лазер на парах щелочных металлов с диодной накачкой содержит лазерную камеру с внутренней полостью с прозрачными торцевыми окнами, замкнутый герметичный контур для циркуляции активной среды, проходящий через внутреннюю полость камеры в направлении, поперечном к оптической оси камеры, источник излучения накачки на основе лазерных диодов и оптические средства формирования и фокусировки излучения накачки во внутреннюю полость камеры. Активная среда представляет собой смесь из буферного газа и пара щелочного металла. Источник излучения накачки расположен со стороны торцевого окна лазерной камеры таким образом, что направление формируемого им излучения накачки ориентировано продольно направлению оптической оси камеры. Оптические средства формирования и фокусировки излучения накачки выполнены и установлены с обеспечением построения в активной среде в одной и той же плоскости, поперечной оптической оси камеры, изображения излучающей зоны источника излучения накачки в направлении ее короткой стороны и Фурье-изображения излучающей зоны источника излучения накачки в направлении ее длинной стороны. Технический результат заключается в обеспечении более эффективного преобразования энергии накачки в лазерную энергию и в повышении КПД лазера. 4 з.п. ф-лы, 3 ил.
Наверх