Плазмотрон


H05H1/26 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)
H05H1 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)

 

Использование: для сварки и резки металлов. Сущность изобретения: плазмотрон содержит катод 2, катододержатель, анод 5 в форме сопла, анододержатель 10, изоляционную прослойку, совмещенную с корпусом 1, металлический кожух 7, электроизолированный от анода высокотемпературным пластичным материалом 9, канал 4 для подачи плазмообразующего газа и канал 12 для охлаждающей жидкости. Провод 11 электропитания анода размещен в канале для охлаждающей жидкости и подсоединен к анододержателю 10. Кожух плазмотрона выполнен из алюминия или алюминиевого сплава и покрыт снаружи и изнутри непроводящей окисной пленкой. Для изоляции кожуха использован глинозем 9. Между катодом и катододержателем выполнено уплотнение 8 на конусе Морзе с резиновой прокладкой. 4 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам для создания никзотемпературной плазмы, а именно к плазмотронам, и может быть использовано в машиностроительной, металлообрабатывающей и других отраслях промышленности.

Известен плазмотрон, содержащий электродный узел и сопло с изоляционными вставками [1] Наиболее близкой к изобретению является плазменная дуговая горелка [2] Она содержит съемный металлический корпус, образующий сопло, катод и штуцера подачи воды и воздуха.

Недостатком известных устройств является то, что при касании корпусом плазмотрона обрабатываемого металла может произойти короткое замыкание на корпус, которое вызывает выход плазмотрона из строя.

Цель изобретения повышение ресурса работы плазмотрона и его защищенности.

Цель достигается тем, что в плазмотроне, содержащем катододержатель с каналом для охлаждающей жидкости, катод с активной вставкой, анод в форме сопла, установленный соосно с катодом, электрический изолятор, размещенный снаружи и коаксиально с катододержателем, и штуцера подвода и слива охлаждающей жидкости и воздуха, дополнительно установлен анододержатель, размещенный в полости изолятора коаксиально с катодом, при этом коаксиально и с зазором относительно электрического изолятора и боковой поверхности анода установлен съемный металлический кожух, электрически изолированный от анода прослойкой из высокотемпературного пластического материала, в зазоре между кожухом и изолятором, образующем канал для охлаждающей жидкости, размещен провод электропитания анода, подсоединенный к анододержателю.

Плазмотрон может иметь в качестве высокотемпературного пластичного изоляционного материала глинозем. Плазмотрон может иметь кожух из алюминия или алюминиевого сплава. Плазмотрон может иметь кожух, внутренняя и внешняя поверхности которого покрыты окисной пленкой. Плазмотрон может иметь резиновую прокладку на конусе Морзе.

На чертеже представлен предложенный плазмотрон.

Он содержит корпус 1 из изоляторного материала, катод 2, установленный внутри корпуса, канал 3 подачи воздуха, трубку 4 для подвода охлаждающей жидкости, анод 5, расположенный соосно с катодом 2 с образованием сопла, штуцер 6 слива охлаждающей жидкости, кожух 7, выполненный из алюминиевого сплава и закрепленный в корпусе 1, уплотнение 8 на конусе Морзе, высокотемпературный пластичный изоляционный материал 9, размещенный между анодом 5 и кожухом 7, и анододержатель 10 с проводом 11. Кожух 7 по всей длине установлен с образованием канала 12 для провода охлаждающей жидкости, связанного с трубкой 4, анод 5 выполнен с зазором относительно кожуха 7, а провод 11 проложен по стенке канала 12 и запаян в штуцер 6 слива охлаждающей жидкости.

Плазмотрон работает следующим образом.

После кратковременной подачи высоковольтного напряжения между катодом 2 и анодом 5 промежуток пробивается, и возникшая дуга выдувается воздухом на разрезаемую деталь. В случае касания плазмотроном разрезаемой детали между электрически изолированным кожухом 7 и электродами 2 и 5 плазмотрона возникает ток утечки по воде, приводящий к образованию оксидной пленки, которая снижает ток утечки и предотвращает возникновение двойного дугообразования. Кроме того, при разрезании детали капли расплавленного металла могут попасть на кожух 7. Но так как его внутренняя поверхность хорошо охлаждается, это не приводит к повреждениям и выходу плазмотрона из строя.

Высокотемпературный изоляционный материал 9 защищает резиновое уплотнение от теплового излучения плазмы и капель расплавленного металла, а также предотвращает закорачивание кожуха 7 и анода 5 при попадании крупных капель расплавленного металла в зазор между ними. Сильно загрязненная поверхность материала 9 легко удаляется вместе с последним, и защита зазора между кожухом 7 и анодом 5 восстанавливается путем заполнения зазора новой порцией материала 9. Уплотнение в конусе Морзе служит для предотвращения утечки воды по конусу, что увеличивает ресурс работы катода 2 в 3-6 раз.

Формула изобретения

1. ПЛАЗМОТРОН, содержащий катододержатель с каналом для охлаждающей жидкости, катод с активной вставкой, анод в форме сопла, установленный соосно с катодом, электрический изолятор, размещенный снаружи и коаксиально с катододержателем, и штуцеры подвода и слива охлаждающей жидкости, отличающийся тем, что плазмотрон дополнительно содержит анододержатель, размещенный в полости изолятора коаксиально с катодом, при этом коаксиально и с зазором относительно электрического изолятора и боковой поверхности анода установлен съемный металлический кожух, электрически изолированный от анода прослойкой, выполненной из высокотемпературного пластичного материала, а в зазоре между кожухом и изолятором, образующем канал для охлаждающей жидкости, размещен провод электропитания анода, подсоединенный к анододержателю.

2. Плазмотрон по п.1, отличающийся тем, что в качестве изоляционного высокотемпературного пластичного материала использован глинозем.

3. Плазмотрон по п.1, отличающийся тем, что кожух выполнен из алюминиевого сплава или алюминия.

4. Плазмотрон по пп.1 и 3, отличающийся тем, что внутренняя и внешняя поверхности кожуха покрыты окисной пленкой.

5. Плазмотрон по п.1, отличающийся тем, что между катодом и катододержателем образовано уплотнение на конусе Морзе с резиновой прокладкой.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к плазменной технике и может быть использовано для получения газоpазрядной плазмы при высоком и низком давлении

Изобретение относится к плазменной технике и может быть использовано для генерации ионов, для введения их в газовые пространства, например в МГД-генераторах, в плазмохимических установках, а также для преобразования спектральных характеристик излучения и охлаждения газовой смеси

Изобретение относится к физическим приборам, обеспечивающим создание низкотемпературной плазмы, и может быть также применено в качестве источника света (в том числе источника сложной конфигурации для рекламных целей) и в плазмохимических реакторах, предназначенных для создания ионизованного газа в больших (400 л и более) объемах и т.д

Изобретение относится к автоматическому регулированию и может быть использовано в системах подачи рабочего тела (РТ) плазменных ускорителей, а более конкретно для регулирования и распределения газообразного РТ стационарных плазменных двигателей (СПД) космических аппаратов; в наземных условиях - для обеспечения работы технологических источников плазмы

Изобретение относится к плазменной технике и может быть использовано при термической и плазмохимической обработке поверхностей изделий

Изобретение относится к области плазменной технологии, а именно к способу управления плазменным потоком и плазменному устройству для его реализации

Изобретение относится к области плазменной технологии, а именно к способу управления плазменным потоком и плазменному устройству для его реализации

Изобретение относится к области плазменной технологии, а именно к способу управления плазменным потоком и плазменному устройству для его реализации

Изобретение относится к плазменной технике и может быть использовано при разработке электрореактивных двигателей и технологических источников ускоренных потоков для ионно-плазменной обработки поверхности материалов в вакууме

Изобретение относится к плазменной технике и может быть использовано для получения газоpазрядной плазмы при высоком и низком давлении

Изобретение относится к плазменной технике и может быть использовано для генерации ионов, для введения их в газовые пространства, например в МГД-генераторах, в плазмохимических установках, а также для преобразования спектральных характеристик излучения и охлаждения газовой смеси

Изобретение относится к физическим приборам, обеспечивающим создание низкотемпературной плазмы, и может быть также применено в качестве источника света (в том числе источника сложной конфигурации для рекламных целей) и в плазмохимических реакторах, предназначенных для создания ионизованного газа в больших (400 л и более) объемах и т.д

Изобретение относится к ускорительной технике, в частности к линейным резонансным ускорителям ионов, и может быть использовано при создании новых и реконструкции действующих радиационно-ускорительных комплексов, в которых используется промежуточная перезарядка пучков ускоренных ионов

Изобретение относится к автоматическому регулированию и может быть использовано в системах подачи рабочего тела (РТ) плазменных ускорителей, а более конкретно для регулирования и распределения газообразного РТ стационарных плазменных двигателей (СПД) космических аппаратов; в наземных условиях - для обеспечения работы технологических источников плазмы

Изобретение относится к плазменной технике и может быть использовано при термической и плазмохимической обработке поверхностей изделий

Изобретение относится к области плазменной технологии, а именно к способу управления плазменным потоком и плазменному устройству для его реализации

Изобретение относится к области плазменной технологии, а именно к способу управления плазменным потоком и плазменному устройству для его реализации

Изобретение относится к области плазменной технологии, а именно к способу управления плазменным потоком и плазменному устройству для его реализации
Наверх