Дроссель

 

Использование: в металлургии, а именно в магнитных сплавах, для дросселей помехоподавляющих фильтров. Сущность изобретения: в качестве магнитного материала сердечника устройства используются аморфные сплавы, обладающие высокой индукцией насыщения и положительной константой магнитострикции. Сплавы на основе железа могут содержать компоненты при следующем соотношении: один или несколько компонентов из группы, содержащей Mn, Cr, Mo, W, V, Nb, Ta, Ti, Zr, Hf в количестве 0,1 - 15 ат.%, один или несколько компонентов из группы, содержащей Si, B, C, P в количестве 15 - 30 ат.%, или один или несколько компонентов из группы, содержащей Si, B, C, P в количестве 15 - 30 ат. %, Co и/или Ni в количестве 0,1 - 30 ат.%, один или несколько компонентов из группы, содержащей Si, B, C, P в количестве 15 - 30 ат.%. Объемная доля кристаллической фазы в аморфной ленте не должна превышать 50%. Близкой к оптимальному является объемная доля кристаллитов 0,1 - 10%, причем кристаллиты должны быть распределены в поверхностном слое лент магнитного сплава. При локализации кристаллитов в поверхностном слое аморфной ленты возникают плоскостные напряжения, которые более эффективно сглаживают кривую намагничивания при сохранении высокого уровня магнитной проницаемости. 5 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к металлургии, а именно к магнитным сплавам для дросселей помехоподавляющих фильтров. Сердечники дросселей должны иметь высокое значение максимального магнитного поля, в пределах которого магнитная проницаемость практически не изменяется.

Известен дроссель, сердечник которого изготовлен из магнитомягкого феррита (1). Однако ферриты имеют низкую индукцию насыщения и невысокое максимальное магнитное поле. К недостаткам ферритов относится также нелинейность кривой намагничивания и, как следствие, непостоянство магнитной проницаемости при изменении величины магнитного поля. Кроме того, из-за низкой температуры Кюри 200оС ферриты имеют низкую температурную стабильность.

В дросселе (2), выбранном в качестве прототипа, сердечник изготовлен из аморфного сплава с положительной константой магнитострикции. После отжига сердечник пропитывают эпоксидной смолой и сушат при температуре не выше 150оС. За счет внутренних напряжений, создаваемых эпоксидной смолой, кривая намагничивания сердечника сглаживается. Пропитка эпоксидной смолой позволяет получить жесткий сердечник. Жесткий сердечник можно использовать без каркаса, что упрощает технологию изготовления дросселя. Недостатком дросселя-прототипа является достаточно большая нелинейность кривой намагничивания. Так, в области до 200 А/м магнитная проницаемость снижается в четыре раза, а в области до 800 А/м в десять раз. Кроме того, использование для пропитки сердечника органического клея не позволяет проводить конечную термообработку при высокой температуре, а это снижает температурную стабильность характеристик дросселя.

Указанные недостатки отсутствуют в дросселе, сердечник которого изготовлен из магнитного сплава с частично кристаллизованной аморфной структурой, а в межвитковом пространстве сердечника находится отвердевший неорганический клей. В таком сердечнике сжимающие напряжения в магнитном материале создают как кристаллиты, так и неорганический клей. При локализации кристаллитов в поверхностном слое аморфной ленты возникают плоскостные напряжения, которые более эффективно сглаживают кривую намагничивания при сохранении высокого уровня магнитной проницаемости. Неорганическим клеем пропитывают неотожженный сердечник. Отвердение клея при отжиге способствует стабилизации процесса кристаллизации аморфного сплава. Так как отвердение и кристаллизация протекают при высокой температуре, готовый сердечник имеет высокую температурную стабильность.

В качестве магнитного материала можно использовать аморфные сплавы, обладающие высокой индукцией насыщения и положительной константой магнитострикции. Сплавы на основе железа могут содержать компоненты при следующем соотношении: один или несколько компонентов из группы, содержащей Mn, Cr, Mo, W, V, Nb, Ta, Ti, Zr, Hf в количестве 0,1-15 ат. один или несколько компонентов из группы, содержащей Si, B, C, P в количестве 15-30 ат. или один или несколько компонентов из группы, содержащей Si, B, C, P в количестве 15-30 ат. Со и/или Ni в количестве 0,1-30 ат. один или несколько компонентов из группы, содержащей Si, B, C, P в количестве 15-30 ат.

Объемная доля кристаллической фазы в аморфной ленте не должна превышать 50% В противном случае резко возрастает коэффициент прямоугольности петли магнитного гистерезиса сердечника. Близкой к оптимальному является объемная доля кристаллитов 0,1-10% причем кристаллиты должны быть распределены в поверхностном слое ленты магнитного сплава.

В качестве неорганического клея предпочтительно использовать клеи на основе силиката натрия (жидкое стекло), которые обладают хорошей адгезией к поверхности аморфной ленты.

Для испытаний готовили дроссели, состоящие из одного сердечника диаметром 32х20 мм и высотой 10 мм и одной обмотки с числом витков равным 6. Сердечники навивали из аморфного магнитного сплава Fe77Ni1Si9B13 и пропитывали водным раствором силиката натрия с плотностью 1300 кг/м3. Затем проводили сушку при 90оС и окончательный отжиг при 450оС в течение 1 ч. На чертеже представлены зависимости дифференциальной магнитной проницаемости g, измеренной при частоте переменного тока 1000 Гц, от величины подмагничивающего поля Но для дросселей, изготовленных согласно изобретению (кривые 1 и 2). Для сравнения приведены данные для дросселя-прототипа (кривая 3), в котором пропитку проводили органическим клеем после отжига сердечника. Предлагаемый дроссель по сравнению с прототипом имеет большее значение максимального магнитного поля, в пределах которого дифференциальная магнитная проницаемость остается постоянной.

В табл.1 представлены результаты испытания дросселей, сердечники которых пропитаны силикатом натрия и отожжены при различных температурно-временных режимах. Приняты следующие обозначения: o начальная магнитная проницаемость, Br/Bs коэффициент прямоугольности, Нм максимальное магнитное поле. Из табл.1 следует, что с увеличением времени или температуры отжига растет объемная доля кристаллической фазы в аморфной матрице. При отсутствии кристаллической фазы (дроссель 1) коэффициент прямоугольности петли магнитного гистерезиса превышает 0,1. Также коэффициент прямоугольности растет при избыточном объеме кристаллической фазы. Несмотря на то, что максимальное магнитное поле в дросселях 4 и 5 превышает 1000 А/м, большая величина остаточной намагниченности приводит к значительной нелинейности кривой намагничивания. Оптимальным является присутствие в аморфном сплаве небольшой доли кристаллической фазы.

В табл.2 приведены примеры использования различных сплавов для изготовления дросселей. Отжиг сердечников после пропитки водным раствором силиката натрия проводили по оптимальным режимам для каждого сплава. Из табл.2 следует, что в качестве магнитного материала сердечников фильтров пригодна большая группа аморфных сплавов на основе железа.

Формула изобретения

1. ДРОССЕЛЬ, состоящий из одного или нескольких витых сердечников и одной или нескольких обмоток, отличающийся тем, что сердечник изготовлен из магнитного сплава с частично кристаллизованной аморфной структурой, причем объемная доля кристаллической фазы не превышает 50% а в межвитковом пространстве сердечника находится отвердевший неорганический клей.

2. Дроссель по п. 1, отличающийся тем, что магнитный сплав содержит компоненты при следующем соотношении, ат.

Один или несколько компонентов из группы, содержащей марганец, хром, молибден, вольфрам, ванадий, ниобий, тантал, цирконий, гафний 0,1 15,0 Один или несколько компонентов из группы, содержащей кремний, бор, углерод, фосфор 15 30 Железо Остальное 3. Дроссель по п. 1, отличающийся тем, что магнитный сплав содержит компоненты при следующем соотношении, ат.

Один или несколько компонентов из группы, содержащей кремний, бор, углерод, фосфор 15 30 Один или два компонента из группы, содержащей кобальт и никель 0,1 - 30 Железо Остальное 4. Дроссель по п. 1, отличающийся тем, что магнитный сплав содержит компоненты при следующем соотношении, ат.

Один или несколько компонентов из группы, содержащей кремний, бор, углерод, фосфор 15 30 Железо Остальное 5. Дроссель по п.1, отличающийся тем, что кристаллическая фаза распределена в поверхностном слое ленты магнитного сплава, а ее объемная доля составляет 0,1 10%
6. Дроссель по п.1, отличающийся тем, что неорганическим клеем является клей на основе силиката натрия.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к электротехнике, а именно к устройствам для ограничения тока короткого замыкания в электрической цепи

Изобретение относится к электротехнике и энергетике, а именно к токоограничивающим устройствам трансформаторного типа, и может применяться для ограничения сверхтоков и токов короткого замыкания в электрических сетях напряжением до 1 кВ и выше

Изобретение относится к электротехнике и может быть использовано в вентильных преобразователях для мощного электропривода постоянного и переменного тока, а также в мощных статических преобразователях для различных отраслей народного хозяйства

Изобретение относится к электротехнике , в частности к балластным дросселям д,пя газоразрядных ламп

Изобретение относится к преобразовательной технике и может быть использовано в инверторах напряжения

Изобретение относится к области электротехники и может быть использовано для фильтрации высокочастотных колебаний в двухпроводных однопроводных цепях

Реактор // 1150666

Изобретение относится к порошковой металлургии, в частности к технологии изготовления никель-цинкового феррита

Изобретение относится к технологии порошков Mn-Zn феррита, в частности для производства сердечников отклоняющих систем телевизионных трубок

Изобретение относится к порошковой металлургии, в частности к способам изготовления постоянных магнитов из магнитотвердых порошков со связками, предназначенных для применения в бытовой технике, электронике, электротехнике, приборостроении
Изобретение относится к способам получения магнитных сплавов на основе редкоземельных и переходных металлов

Изобретение относится к металлургии сплавов, а именно к получению сплавов для изготовления магнитных материалов, содержащих редкоземельные металлы, переходные металлы (железо, кобальт и др.), и может быть использовано при переработке оксидов редкоземельных металлов непосредственно в слитки сплавов, используемых для производства постоянных магнитов

Изобретение относится к получению магнитных материалов, в частности порошка гексаферрита бария, модифицированного титаном и кобальтом, использующегося в качестве магнитного носителя при вертикальном способе записи информации

Изобретение относится к электротехнике и может быть использовано в трансформаторах с падающей нагрузочной характеристикой, например предназначенных для устройств зарядки электрических аккумуляторов или для электропитания электрического разряда

Изобретение относится к обработке металлов давлением, а именно к способу получения постоянных магнитов путем горячей пластической деформации, и может быть использовано в машиностроительной, авиационной и электронной промышленности

Изобретение относится к металлургии и может быть использовано при термической обработке сплавов на основе железа типа сендаст для магнитных головок
Наверх