Способ получения гранулированного сорбента для поглощения масел и смазок

 

Изобретение относится к производству гранулированных целлюлозосодержащих сорбционных материалов, используемых для удаления масел и смазок на финишных операциях обработки металлических деталей сложной формы. Изобретение позволяет получать гранулированный сорбент с максимально возможными прочностными характеристиками и сорбционной способностью на уровне исходного целлюлозосодержащего материала, что достигается многократным пропусканием 5 20 мас. водной суспензии предварительно измельченной средней части растений в силовом поле реактрона с напряжением 0,1 20 мПа, скоростью сдвига (10-25)103c-1 и толщиной слоев, эквивалентной максимальному размеру гранул. 1 з. п. ф-лы, 2 ил. 1 табл.

Изобретение относится к производству сорбционных материалов, в частности к производству гранулированных сорбентов, используемых для удаления масел и смазок на финишных операциях обработки металлических деталей сложной формы.

В процессе удаления масел с поверхности деталей на окончательной стадии их обработки гранулы сорбента находятся в виброкипящем слое, в котором происходит постоянное движение и трение гранул с обрабатываемыми деталями. В таком режиме работы наряду с поглощающей способностью по отношению к сорбируемым с поверхности металлов масел гранулы сорбента должны обладать однородным гранулометрическим составом, высокой прочностью к истиранию и сжатию. Измельчение и мыление сорбента недопустимо, так как образующаяся мелочь оседает в труднодоступных местах деталей и приводит к браку изделий.

Известны сорбенты и способы их получения, в которых основа построена на неорганических материалах и активированных углях [1, 2] Однако они не могут использоваться для удаления масел и смазок при финишной обработке деталей из-за низких показателей к истиранию.

Известны гранулированные сорбенты на основе целлюлозосодержащего сырья, получаемого из сахарного тростника, кукурузы (стебли и кочерыжка), рисовой шелухи, отходов бумажного производства и т.п. [3-7] Наиболее близким к предлагаемому является способ получения гранулированного сорбента для масел и смазок на основе целлюлозосодержащего сырья [8] Согласно данному способу целлюлозосодержащее сырье в виде волокон растений, отходов бумажного производства режут на элементы 1-10 мм, смешивают со связующими добавками 1-25% (каолин, TiO2 и др.), добавляют бактерицидные добавки и измельчают в мельницах до однородной массы. Затем из полученной массы на зернильном барабане формуют гранулы при влажности 40-50% которые в последствии сушат при 90-400оС.

Механическая прочность гранул, полученных этим способом, определяется прочностью частиц измельченного целлюлозосодержащего сырья и прочностью связей частиц со связующим. Причем, требуемые прочностные характеристики для условий использования сорбента на финишной обработке металлов достигаются при максимальном содержании связующего (до 25%), что приводит к резкому снижению сорбционной способности сорбента и является недостатком способа. Другим недостатком является то, что в гранулах сорбента используются все части растительного сырья: сердцевина с оболочкой (примерно 30%), имеющие низкую прочность, и средняя часть растения, имеющая оптимальные характеристики.

Целью изобретения является получение гранулированного сорбента, поглощающего масла и смазки на финишной обработке деталей, с максимально возможными прочностными характеристиками и сорбционной способностью на уровне исходного целлюлозосодержащего материала.

Цель достигается тем, что гранулы сорбента получают из наиболее прочной средней части растений без добавления связующего и других компонентов, снижающих показатели сорбции. Для этого предварительно нарезанный (измельченный) материал-полуфабрикат в виде кусков с размерами до 10 мм многократно пропускают через силовое поле с напряжениями от 0,01 до 0,1 МПа. При этом элементы, имеющие низкую прочность, разрушаются (сердцевина и оболочка растения), а прочная структура дробится на гранулы, размеры которых задаются границами действия силовых напряжений. Многократное пересечение силового поля в направлении, перпендикулярном сдвигающим напряжениям, приводит к окатыванию гранул до частиц по форме, близкой к сферической, при этом в конце обработки остаются только прочные гранулы однородного гранулометрического состава.

Предлагаемый способ формирования гранул в силовом поле может быть осуществлен, например, в жидкости при сдвиге слоев в тонких зазорах. Величина напряжений сдвига в этом случае будет пропорциональна эффективной вязкости жидкости и величине скорости сдвига. Оптимальный режим формирования гранул достигается, когда напряжения сдвига больше прочности рыхлых структур, но меньше прочности плотных структур целлюлозного материала. Наиболее доступным путем получения необходимых параметров силового поля является сдвиг слоев водной суспензии целлюлозного материала (например, в реактроне, ротор и статор которого оснащены рядами кольцевых зубьев, установленных с определенным зазором между рядами). При этом концентрация водной суспензии должна быть в пределах от 5 до 20 мас. а скорость сдвига от 10103 до 25103 с-1. Скорость сдвига, равная отношению окружной скорости к величине зазора между рядами ротора и статора, регулируется частотой вращения. Указанные режимы обеспечивают требуемые характеристики напряжений сдвига в силовом поле и гарантируют получение качественных гранул сорбента. Диапазон концентрации суспензии выбирается исходя из обеспечения необходимой величины эффективной вязкости (100-400 сП), при уменьшении вязкости невозможно реализовать минимальные напряжения сдвига для разрушения мягких структур сырья, а при увеличении резко возрастают затраты мощности и происходит забивка коммуникаций, что делает процесс невыгодным.

Диапазон требуемых скоростей сдвига также непосредственно связан с реализацией требуемых напряжений сдвига и затратами мощности; уменьшение скорости не позволяет реализовать минимальный уровень разрушающих напряжений даже при максимальной вязкости суспензии, а увеличение приводит к неоправданным затратам мощности. Эффективная вязкость суспензии, напряжения сдвига и потребляемая мощность связаны соотношениями j; N= j2 V, где эффективная вязкость; j скорость сдвига; напряжения сдвига; N мощность; V элементарный объем.

По указанным соотношениям подбираются оптимальные величины концентрации водной суспензии и скорость сдвига. Для этого необходимо знать прочностные характеристики сырья (минимальное и максимальное напряжения разрушения) и эффективную вязкость суспензии. Границы силового поля (для реактрона они эквивалентны величине зазоров между рядами зубьев ротора и статора) устанавливаются равными требуемым размерам гранул сорбента по верхнему пределу.

На фиг. 1 изображена установка для реализации предлагаемого способа; на фиг. 2 рабочие элементы реактрона (ротор и статор) и механизм формирования гранул.

Установка состоит из суспензатора 1, реактрона 2, соединенных трубопроводом.

В качестве целлюлозосодержащего материала использовалась кукурузная кочерыжка, минимальный и максимальный пределы прочности для которой составляют 0,05-0,5 мПа соответственно. Исходный материал предварительно дробился на элементы размером до 10 мм и загружался в суспензатор. Количество воды и материала выбиралось исходя из требований к концентрации суспензии. Включалась мешалка для получения однородной суспензии, затем включался реактрон и через определенные промежутки времени отбирались пробы на определение гранулометрического состава и сорбционной способности.

Данные по параметрам измельчения, и характеристикам полученных материалов приведены в таблице.

Анализ данных таблицы показывает, что при концентрациях суспензии 5-20% и скоростях сдвига в интервале (10-25) 103с-1 получается гранулированный материал с показателем сорбционной способности на уровне исходного сырья и однородным гранулометрическим составом. Прочность полученных гранул, определяемая по напряжению сжатия, соответствует максимальным значениям исходного сырья.

Увеличение концентрации суспензии более 20% приводит к резкому росту энергозатрат и частым забивкам трубопроводов. Уменьшение концентрации ниже 5% и снижение скорости сдвига менее 104 с-1 приводит к появлению отдельных гранул с уменьшенным в 2,5-3 раза напряжением на сжатие и резко уменьшает производительность установки.

Предлагаемый способ получения гранулированного сорбента не требует сложного оборудования (смесителей, грануляторов, отжимных прессов), позволяет реализовать высокую производительность, которая в зависимости от типа реактрона составляет по суспензии от 10 до 60 м3/ч. Показанная на фиг. 1 схема легко преобразуется в установку непрерывного действия, для этого на выходе из реактрона устанавливается разделитель суспензии, соединенный одним концом с приемником кондиционных гранул, а другим с суспензатором для возврата воды и некондиционных материалов.

Выход готовой продукции по отношению к исходному сырью составляет не менее 50% потери не более 10% остальное приходится на неплотные структуры кукурузной кочерыжки и шелухи.


Формула изобретения

1. СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО СОРБЕНТА ДЛЯ ПОГЛОЩЕНИЯ МАСЕЛ И СМАЗОК, включающий измельчение целлюлозосодержащего сырья на элементы с размерами 1 10 мм и формирование гранул, отличающийся тем, что формирование гранул производят путем пропускания предварительно приготовленной суспензии измельченного целлюлозосодержащего сырья через силовое поле с напряжением сдвига 0,1 20,0 МПа, пересекая его в направлении, перпендикулярном действию силовых напряжений, причем расстояние между границами действия напряжений эквивалентно максимальному размеру гранул.

2. Способ по п.1, отличающийся тем, что силовое поле получают перемещением слоев водной суспензии целлюлозосодержащего сырья с концентрацией 5 20 мас. при скорости сдвига (10 25) 103 с-1 и толщине слоев, эквивалентной максимальному размеру гранул.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к области аналитической химии, экологии, медицины и найдет применение при контроле содержания органических загрязнителей воздуха, воды, включая очистку воздуха, воды от последних, в области медицины при создании новых материалов медицинского назначения, а также материалов для очистки вирусных суспензий от посторонних белков и материалов для гемосорбции

Изобретение относится к химической промышленности

Изобретение относится к способам получения селективного сорбента меди, который используется для разделения, очистки и извлечения металлов из растворов в аналитической химии, в гидрометаллургии, а также для удаления ионов цветных металлов из сточных вод

Изобретение относится к способам получения сорбентов при очистке воды от радионуклидов, пестицидов и других распространенных техногенных загрязнителей

Изобретение относится к способам получения сорбентов на основе пористых материалов (опока, кизельгур, диатомит и др.) и может быть использовано для очистки промышленных и бытовых стоков от ионов тяжелых металлов, фенолов, хлорамина Б, ПАВ и др

Изобретение относится к способам получения композитных сорбентов на основе гексацианоферрата транзитных металлов и органических носителей, а также к композитным сорбентам, полученным этим способом, и обладающим высокой степенью извлечения радионуклидов цезия (до 98,9%), стронция (до 85,5%), таллия (до 96,7%), а также низкой степенью растворимости в воде, составляющей менее 0,01%

Изобретение относится к сорбентам для сбора нефти, масел, мазута, топлив, углеводородов с поверхности воды и почвы

Изобретение относится к сорбентам для очистки различных жидких сред от тяжелых металлов и радиоактивных изотопов

Изобретение относится к области охраны окружающей среды и может быть использовано для очистки поверхности воды от нефти и нефтепродуктов

Изобретение относится к области применения адсорбентов для сбора нефти с поверхности воды и может быть использовано для очистки водоемов и акваторий от нефти

Изобретение относится к получению сорбентов на основе целлюлозы и может быть использовано в аффинной хроматографии

Изобретение относится к получению сорбентов на основе целлюлозы и может быть использовано в аффинной хроматографии

Изобретение относится к способам извлечения тяжелых металлов из растворов, их содержащих

Изобретение относится к химической технологии, конкретно к производству содержащих гексацианоферраты металлов сорбентов, которые применяются для извлечения радионуклидов цезия из водных растворов
Изобретение относится к маслопоглощающему изделию, которое может быть использовано как на суше, так и на воде
Наверх