Способ получения силикатов галлия с атомным отношением si/ a 20

 

Изобретение относится к способам получения галлосиликатов с атомным отношением Si/a 20, применяемых в качестве катализаторов и адсорбентов. Сущность изобретения: проводят гидротермальную кристаллизацию реакционной смеси, которая содержит в водно-щелочной среде источники SiO2 и Ga2O3. В качестве исходного Si соединения используют тонкую пыль металлургического производства с размером частиц 0,1-5,0 мк, которая содержит 86-99 мас. SiO2, а также примеси. Реакционная смесь не содержит органических соединений азота и углеводородов. Смешивание производят при следующих соотношениях, моль: SiO2:Ga2O3 40 140; OH-:SiO2 0,2-0,6; H2O:SiO2 20-120; Na2O:SiO20,1 0,3. Гидротермальную кристаллизацию проводят при 413-373 К в течение 1-100 ч. 1 з.п. ф-лы, 1 табл.

Изобретение касается способа получения галлосиликатов, в особенности цеолитоподобных галлосиликатов с пентасильной структурой, и их применения в качестве катализаторов и/или адсорбентов.

Состав цеолитоподобного галлосиликата описывается химической формулой (Mn+)x/n [(GaO2)x(SiO2)96 - x] где М щелочной или щелочноземельный элемент n-й валентности; х может принимать значение от 0 до 10.

Цеолиты и цеолитоподобные галлосиликаты относятся к каркасным силикатам. Их структура состоит из тетраэдров ТО4, связанных в углах, в которых атомы кислорода относятся к двум Т-атомам. Природа Т-атомов непостоянна. Наряду с четырехвалентным кремнием в решетку могут входить трехвалентные атомы, такие как алюминий или галлий. Тетраэдры образуют цепи и слои и образуют определенную систему пустот с размером отверстий молекулярного порядка. Эти размеры отверстий каналов и пор определяют доступность к внутренней системе пустот для веществ соответственно их форме и виду и тем самым дают этим пористым телам свойства разделителей. Если после синтеза заменить атомы щелочных или щелочноземельных элементов протонами, то образуются активные гетерогенные кислые катализаторы.

Цеолитоподобные галлосиликаты пригодны для использования в качестве катализаторов в нефтехимической промышлен- ности и для получения ценных органических промежуточных продуктов. Благодаря своим дегидрирующим и ароматизирующим свойствам они находят применение в превращениях низких алканов и алкенов, которые сегодня еще часто сжигаются, в высшие алифатические соединения, циклоалифатические соединения, в особенности в простые ароматические соединения. Ароматические соединения, такие как бензол, толуол или ксилол, являются важным сырьем для многочисленных синтезов для производства искусственных волокон, полиэфиров и других синтетических материалов. Они находят применение и в качестве веществ, повышающих октановое число в бензине, не содержащем свинец.

Известные способы получения цеолитоподобных галлосиликатов требуют органических веществ, регулирующих и стабилизирующих структуру. Это чаще всего амины, которые могут представлять собой наряду с дороговизной значительную угрозу окружающей среде.

Цель изобретения создать экологически чистый, неэнергоемкий и сравнительно недорогой способ получения галлосиликатов с каталитическими свойствами и/или галлосиликатов, имеющих характер молекулярного сита.

Цеолитоподобные галлосиликаты можно получить, используя отделяющуюся в металлургическом производстве кремния тонкую пыль с 86-98 мас. SiO2. Можно полностью отказаться от применения этих экологически вредных и часто ядовитых веществ. При получении цеолитоподобных галлосиликатов после синтеза вредные органические вещества не содержатся ни в сточных водах, ни в отходящем воздухе. Можно отказаться от энергоемкого выжигания этих веществ из решетки и переводить образующиеся галлосиликаты после синтеза непосредственно в активные катализаторы с помощью ионного обмена.

П р и м е р 1. 1,459 г тонкой пыли с 86-98 мас. SiO2, образующейся при металлургическом производстве кремния, диспергируют в 20 мл воды, содержащей 0,435 г растворенного NaOH. К этой дисперсии добавляют при помешивании 0,027 г растворенного в 15 мл разбавленной соляной кислоты галлия. Эту реакционную смесь с соотношениями, моль: SiO2/Ga2O3 119; OH-/SiO2 0,42; H2O/SiO2 84 переносят в автоклав объемом 50 мл и выдерживают 72 ч при 453 К под давлением в гидротермальных условиях. После фильтрации и промывки получают 1,2 г как минимум 40% -ного кристаллического галлосиликата, на рентгенодифрактограмме которого обнаруживаются полосы, соответствующие представленным в таблице межплоскостным расстояниям.

П р и м е р 2. 74,203 г образующейся при металлургическом производстве кремния тонкой пыли с 86-98 мас. SiO2 диспергируют в 1700 мл H2O, содержащей 21,131 г растворенного NaOH в двухлитровом автоклаве при перемешивании. Затем к суспензии добавляют 1,135 г Ga в разбавленном солянокислом растворе. Эта реакционная смесь с соотношениями, моль: SiO2/Ga2O3125; OH-/SiO2 0,4 и H2O/SiO2 80 нагревается при постоянном помешивании до 413 К и выдерживается при этой температуре 6,5 ч. Смесь нагревают до 433 К и выдерживают 7,5 ч при этой температуре. Затем смесь нагревают до 453 К и выдерживают 10 ч при этой температуре. После этого температуру доводят до 473 К и выдерживают смесь 16 ч при этой температуре. После охлаждения реакционной смеси, фильтрации и промывки получают 70 г по меньшей мере 50%-ного кристаллического галлосиликата, на рентгенограмме которого обнаруживаются рентгеновские полосы, соответствующие представленным в таблице межплоскостным расстояниям.

П р и м е р 3. 16528 г образующейся при металлическом производстве кремния тонкой пыли с 86-98 мас. SiO2 диспергируют в 20 мл воды, которая содержит 0,37 г растворенного NaOH. К этой дисперсии добавляют при помешивании 0,027 г растворенного в разбавленной соляной кислоте галлия. Эта реакционная смесь с отношением, моль: SiO2/Ga2O 125, OH-/SiO20,35 и H2O/SiO2 80 переносится в автоклав объемом 50 мл и приводится во вращательное движение в сушильном шкафу с перемешивающим устройством с частотой 0,5 Гц.

После охлаждения реакционной смеси, фильтрации и промывки получают 1,3 г по меньшей мере 60%-ного кристаллического галлосиликата, на рентгенограмме которого обнаруживаются рентгеновские полосы, соответствующие представленным в таблице межплоскостным расстояниям.

Формула изобретения

1. СПОСОБ ПОЛУЧЕНИЯ СИЛИКАТОВ ГАЛЛИЯ С АТОМНЫМ ОТНОШЕНИЕМ Si/Ga 20, включающий смешение источников диоксидов кремния и галлия в водно-щелочной среде с последующей гидротермальной кристаллизацией смеси, отличающийся тем, что, с целью улучшения экологичности способа, в качестве источника диоксида кремния используют пыль металлургического производства кремния фракции 0,1 5 мкм, которая имеет следующий состав, мас.

SiO2 86 98 SiC 0,1 1,0 K2O 0,2 3,5 Al2O3 0,1 0,5 MgO 0,2 3,5 SO24- 0,1 0,4 Na2O 0,1 1,8
CaO 0,05 0,3
Fe2O3 0,01 1,0
потери при прокаливании 0,5 4% в том числе С(своб.) 0,2 2%
причем смешение осуществляют при следующих молярных соотношениях:
SiO2 / Ca2O3 40 140;
H2O /SiO2 20 120;
OH- / SiO2 0,2 0,6;
Na2O / SiO2 0,1 0,3
и гидротермальную кристаллизацию проводят при 413 473 К в течение 1 - 100 ч.

2. Способ по п.1, отличающийся тем, что смешение отдельных реакционных компонентов проводят при 293 353 К и гидротермальную кристаллизацию реакционной смеси проводят в две стадии: сначала при 413 453 К в течение 1 - 20 ч и затем при более 453 К в течение 1 100 ч.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области синтеза неорганических соединений

Изобретение относится к способам получения синтетической хризоколлы, являющийся продуктом окисления медных руд, и может быть использована для извлечения меди

Изобретение относится к способу получения метасиликатов металлов, применяемых в оптическом стекловарении

Изобретение относится к силикатам на основе щелочноземельного металла, меди и (в случае необходимости) титана, синим или фиолетовым пигментам на основе этих силикатов, способу их получения
Изобретение относится к области химии

Изобретение относится к области химии силикатных материалов

Изобретение относится к производству бумаги и картона

Изобретение относится к химической технологии и неорганической химии силикатов

Изобретение относится к способам получения силикатов металлов, в частности силиката свинца, широко применяемого в стекловарении, а также в качестве связующего в керамике и одного из компонентов в отвердителях для смол и т.д

Настоящее изобретение относится к способу получения силикофосфатного протонпроводящего материала и может быть использовано для изготовления мембран топливных элементов. Силикофосфатный протонпроводящий материал получен золь-гель методом. Исходные вещества для осуществления способа: тетраэтоксисилан, этанол, ортофосфорная кислота, серная кислота, четвертичная соль аммония с азотсодержащими гетероциклами с одним или двумя атомами азота, вода. Разработаны 3 варианта способа получения. Целевой материал получают в виде пленки различной толщины. Техническим результатом является обеспечение возможности получения силикофосфатного протонпроводящего материала в виде прочной пленки с минимальной толщиной 100-200 мкм, а также сохранение высокой протонной проводимости материала в широком температурном диапазоне. 3 н. и 6 з.п. ф-лы, 9 пр., 2 табл.
Изобретение может быть использовано для визуализации света ультрафиолетового диапазона, рентгеновского и электронного излучения в осветительных системах и оптических дисплеях. Сложный силикат редкоземельных элементов состава Sr2Gd8(1-x)Eu8xSi6O26 (0,001≤x≤0,5) в наноаморфном состоянии используют в качестве люминофора красного свечения. Предложенный люминофор обладает высокой интенсивностью красного свечения, при этом интенсивность оранжевого свечения к красному составляет 14-16%, т.е. уменьшена по сравнению с известными люминофорами. 3 пр.
Изобретение относится к кремнезёмсодержащим материалам. Предложен состав, содержащий вещество, имеющее эмпирическую формулу (SiO2)х(ОН)yMzOa, где М представляет собой катион металла или металлоида. 0,01-100% удельной площади поверхности вещества покрыто органосиланом. Молярное отношение у/х составляет от 0,01 до 0,5, молярное отношение x/z составляет от 0,1 до 300, а молярное отношение a/z зависит от свойства содержащегося в веществе оксида металла. Полученный продукт эффективен в качестве наполнителя, носителя катализатора или адсорбента. 3 н. и 7 з.п. ф-лы, 3 пр.
Наверх