Способ очистки хромсодержащих травильных растворов от ионов тяжелых металлов

 

Использование: очистка хромсодержащих травильных растворов от ионов тяжелых металлов до уровня ПДК. Сущность изобретения: растворы обрабатывают сульфидом натрия в несколько стадий при рН 6,4 - 9 понижением до рН 2 4 после каждой стадии. Образующийся осадок отделяют с помощью намывного фильтра. Количество стадий очистки определяют в зависимости от концентрации ионов металлов в исходном растворе. Способ предполагает очистку растворов от Fe, Cu, Mn, Ni, Cr. 3 табл.

Изобретение касается очистки производственных сточных вод и может быть использовано в станкостроительной, электротехнической и других отраслях промышленности.

Предлагаемый способ является реагентным методом очистки отработанных электролитов и травильных хромсодержащих растворов от тяжелых металлов.

Известны реагентные методы очистки травильных растворов, основанные на образовании нерастворимых гидроокисей, сульфидов и т.д.

Основными недостатками способа удаления тяжелых металлов в виде гидроксидов являются большой объем осадка, повышенный расход химикатов и высокая стоимость. Присутствие в травильных растворах ионов железа, кадмия, цинка увеличивает продолжительность процессов очистки вдвое. При очистке хромсодержащих травильных растворов от хрома обычно проводят восстановление шестивалентного хрома до трехвалентного либо введением в раствор SO2, либо введением NaHSO3 при превышении стехиометрического соотношения на 20-30% и рН раствора 2-2,4. Образующийся трехвалентный хром осаждают гидрооксидом натрия.

Наиболее близким к изобретению является способ очистки сточных вод, содержащих комплексонаты тяжелых металлов. Однако этот способ сложен и дорогостоящий. Совместное использование неорганического реагентного способа и микроорганизмов не дает полной очистки сточных вод, содержащих несколько тяжелых металлов, уровень ПДК не достигается.

Целью изобретения является повышение степени очистки хромсодержащих травильных растворов от тяжелых металлов до уровня ПДК с использованием очищенной воды в замкнутом технологическом цикле.

Это достигается постадийным введением процесса очистки при переменном рН.

Отработанный хромсодержащий травильный раствор с высоким содержанием шестивалентного хрома и других тяжелых металлов при перемешивании обрабатывают раствором сульфида натрия до доведения рН 6,4-9. При этом происходит переход шестивалентного хрома в трехвалентный с выпадением осадка. Осадок отфильтровывают и фильтрат подкисляют соляной кислотой до рН 2-4. Затем повторно проводится обработка раствором Na2S до рН 6,4-9. При этом происходит полное осаждение остаточного хрома и соосаждение тяжелых металлов. Полученная мелкодисперсная суспензия нерастворимых сульфидов тяжелых металлов отфильтровывается на фильтре, состоящем из смеси твердого адсорбента с межполимерным комплексом.

П р и м е р 1. К отработанному хромсодержащему травильному раствору (рН 0,2, концентрация CrO3 12%) добавляют при перемешивании 10%-ный раствор Na2S (до рН 6,5). Образовавшийся осадок отфильтровывают. К фильтрату добавляют 2 NHCl (до рН 2,5). Описанную стадию повторяют 4 раза. После второго осаждения отделение осадка осуществляют через намывной фильтр.

Результаты очистки представлены в табл.1.

Если Na2S прибавляют в количестве, при котором рН отработанного травильного раствора становится меньше 6,4, в этом случае не происходит полное отделение тяжелых металлов. При превышении рН свыше 9 степень очистки травильного раствора не повышается.

В табл.2 представлены результаты очистки при рН 5.

В табл. 3 представлены результаты очистки травильного раствора при рН 9,5.

Формула изобретения

СПОСОБ ОЧИСТКИ ХРОМСОДЕРЖАЩИХ ТРАВИЛЬНЫХ РАСТВОРОВ ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ, включающий обработку сульфидом натрия с последующим отделением образующегося осадка, отличающийся тем, что обработку сульфидом натрия осуществляют в несколько стадий при pH 6,4 9 с понижением до pH 2 4 после каждой стадии, осадок отделяют фильтрованием на намывном фильтре, а количество стадий определяют по концентрации ионов металлов в исходном растворе.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области очистки жидкостей и может быть использовано для глубокой очистки промышленных стоков

Изобретение относится к очистке высокоминерализованных сточных вод от растворенных в них солей различных химических элементов и может быть использовано для очистки сточных вод шахт, карьеров, гальваностоков, предприятий по выплавке черных и цветных металлов, опреснения морской воды и в других отраслях промышленности

Сепаратор // 2048448
Изобретение относится к устройствам для сепарации и может быть использовано для очистки от загрязнения и регенерации жидкостей, содержащих поверхностно-активные вещества, например водных моющих растворов, применяющихся при ремонте и техническом обслуживании машин

Изобретение относится к способам очистки растворов от дисперсных частиц и металлсодержащих ионов и может быть использовано на предприятиях химической промышленности, цветной и черной металлургии

Изобретение относится к опреснению морской воды, гелиотехнике, ветроэнергетике и вентиляции

Изобретение относится к области получения фильтрующих материалов и использования этих материалов в фильтрах для очистки сточных нефтесодержащих вод нефтяного производства от нефтепродуктов

Изобретение относится к электрохимической обработке водных растворов и получения газов, а именно к электрохимической установке со сборными и распределительными коллекторами анолита и католита, при этом анодные и катодные камеры выполнены в форме параллелограмма, в верхних и нижних углах которого для сообщения соответственно со сборными и распределительными коллекторами устроены каналы, обеспечивающие направление движения электролитов в анодных камерах справа-наверх-влево, а в катодных камерах - слева-наверх-вправо, и выполненные в виде ограниченного пространства, осуществляющего неполное сжатие и расширение потока электролита за счет того, что одна сторона канала представляет собой прямую, являющуюся продолжением боковой стенки камеры до пересечения со сборным или распределительным коллектором в точке прохождения радиуса коллектора R, перпендикулярного этой боковой стенке, вторая сторона канала изготовлена в виде полукруга, соединяющего сборный или распределительный коллектор со второй боковой стенкой камеры в точке пересечения полукруга с радиусом коллектора R, параллельным прямой стороне канала, причем радиус полукруга r и радиус сборного или распределительного коллектора R связаны соотношением R > r > 0

Изобретение относится к обработке воды, а именно к способу обеззараживания воды, основанному на электролизе, при этом обработку исходной воды осуществляют одновременным воздействием на нее в анодных камерах двух двухкамерных электролизеров с катионообменными мембранами атомарного кислорода, угольной кислоты, а также гидратированных ионов пероксида водорода с введением в анодную камеру первого электролизера водного раствора гидрокарбоната натрия с рН = 10,5...11,5, в анодную камеру второго электролизера водного раствора гидрокарбоната натрия с рН = 8,5...9,0, получением после анодной камеры первого электролизера анолита с рН = 3-4, последующей доставкой его в обе камеры второго электролизера и получением после катодной камеры второго электролизера питьевой воды с рН = 7,0-8,5, при этом получаемый во втором электролизере анолит смешивается с исходной водой перед введением в камеры первого электролизера, а католит после первого электролизера отводится из устройства
Наверх