Способ сварки плавлением тугоплавких металлов со сплавами на основе железа

 

Использование: для сварки плавлением разнородных металлов, например, молибдена со сталью, молибдена с железно-никелевым сплавом, молибдена с коваром в производстве теплообменных аппаратов. Сущность изобретения: в способе сварки плавлением тугоплавкого металла со сплавами на основе железа процесс осуществляется с использованием промежуточной вставки, состоящей из меди и ниобия, причем толщина слоя из меди к слою из ниобия относится как 0,8 1,4. Перед сваркой к тугоплавкому металлу предварительно припаивают ниобиевую прокладку медным припоем, являющимся компонентом барьерного слоя. В результате на поверхности тугоплавкого металла формируется барьерный слой, состоящий из ниобия и меди. 4 ил. 2 табл.

Изобретение относится к сварке плавлением разнородных металлов, например молибдена со сталью, молибдена с железо-никелевым сплавом, молибдена с коваром, и может быть использовано в производстве теплообменных элементов.

Известен способ сварки плавлением тугоплавких металлов со сталью через промежуточную прокладку из меди, в которой между свариваемыми металлами вводят медную фольгу толщиной 0,1 мм и расплавляют только кромку стали [1] К недостаткам указанного способа следует отнести низкое качество сварного соединения вследствие образования хрупких интерметаллидов тугоплавкого металла с компонентами стали, так как в данном сочетании медь не может являться барьером из-за ее интенсивного испарения из зоны соединения и проникновения в сталь.

Наиболее близким по техническим сущностям и достигаемым результатам к изобретению является способ сварки плавлением с применением промежуточной барьерной прокладки из сплава, содержащего 35% никеля и 65% меди, при котором расплавлению подвергают только кромку стали и промежуточную прокладку [2] Недостатками прототипа являются низкое качество сварного соединения, ограниченность выбора диапазона режимов сварки, существенное изменение состава шва, обусловленное недостаточной стойкостью барьерной прокладки вследствие испарения ее компонентов, интенсивного растворения тугоплавкого металла и прокладки в металле шва из-за непосредственного их контакта при высокой температуре нагрева (1440-1500оС) с расплавленной сталью, что приводит к образованию хрупкой прослойки интерметаллидов в шве и снижению механических свойств (прочность и пластичность).

Целью изобретения является повышение прочности и пластичности сварного соединения.

Это достигается тем, что в способе сварки плавлением тугоплавкого металла со сплавами на основе железа процесс осуществляется с использованием промежуточной барьерной вставки, состоящей из ниобия и меди определенных толщин (ниобий 0,07-0,1 мм), причем толщина слоя из меди к слою из ниобия относится как 0,8-1,4. Перед сваркой к тугоплавкому металлу предварительно припаивают ниобиевую прокладку медным припоем, являющимся компонентом барьерного слоя. В результате этого на поверхности тугоплавкого металла формируется барьерный слой, состоящий из ниобия и меди.

Выбор ниобия в качестве основного барьерного подслоя обусловлен высокой температурой его плавления (2400оС), что предупреждает контакт расплавленной стали с медью, а выбор толщины ниобия 0,07-0,1 мм определяется условиями его взаимодействия со сталью с целью исключения образования интерметаллидных фаз ниобий-железо и для плавного перехода коэффициента линейного расширения от сплава на основе железа к тугоплавкому металлу. При толщине ниобиевой прокладки менее 0,07 мм в процессе сварки происходит быстрое растворение ниобия в жидкой стали, испарение меди и взаимодействие стали с тугоплавким металлом. Качество сварного соединения снижается. Разрушение при механических испытаниях происходит по стыку. Увеличение толщины ниобиевой прокладки более 0,01 мм может привести при сварке к превышению предела растворимости ниобия в жидкой стали и образованию интерметаллидных прослоек, ухудшающих свойства соединения.

Толщина медного слоя находится в интервале 0,06-0,14 мм. Наличие меди в барьерном слое позволяет предотвратить взаимодействие тугоплавкого металла с ниобием, так как медь является стойким барьером для тугоплавкого металла вследствие его нерастворимости в меди. Если толщина меди в барьерном слое менее 0,06 мм, то в процессе сварки происходит перегрев барьерного слоя, что приводит к растворению тугоплавкого металла в сварном шве с образованием интерметаллидов типа тугоплавкий металл компоненты стали и карбидных фаз типа железо-хром-тугоплавкий металл-углерод. Качество соединения в этом случае низкое. Разрушение при механических испытаниях происходит по стыку. Увеличение меди по толщине свыше 0,14 мм приводит к резкому снижению температуры распая соединения.

На фиг.1 показана схема сборки деталей для получения паяного соединения молибдена с ниобиевой прокладкой через медь; на фиг.2а,б схема сварки молибдена со сталью через барьерный слой; на фиг.3а,б диаграмма влияния толщины барьерного слоя медь-ниобий на механические свойства сварного соединения; на фиг.4 проиллюстрировано влияние толщины меди в барьерном слое на температуру распая соединения молибден-сталь.

Способ осуществляется следующим образом.

Конструкцию (листовую, трубчатую) из тугоплавкого металла и барьерной вставки (ниобий-медь) припаивают в вакуумной печи путем расплавления медной фольги. При этом температура нагрева 1100-1150оС, время выдержки 300 с. После этого детали из тугоплавкого металла с припаянной барьерной вставкой и сплава на основе железа собирают и в сборе выполняют сварку расфокусированным электронным лучом в вакууме с расплавлением более легкоплавкого металла. Значения параметров режима сварки выбирают таким образом, чтобы температура нагрева соединения была равна или выше температуры плавления сплава на основе железа на 70-100оС, время пребывания жидкой сварочной ванны до 10 с. Электронный луч располагают со смещением 1/3 диаметра луча тугоплавкий металл с напаянным барьерным подслоем и 2/3 луча сплав на основе железа. Режимы сварки в свою очередь зависят от конструкционных особенностей изделия, соединяемых материалов, их теплофизических и механических свойств, эксплуатационных условий работы изделия и находятся экспериментально для каждого случая.

П р и м е р 1. Изготавливали сборную конструкцию, состоящую из молибденовой пластины (марки МЧВП) длиной 100 мм, шириной 40 мм, толщиной 1,0 мм и пластины из аустенитной хромоникелевой стали (марки 12Х18Н10Т) длиной 100 мм, шириной 60 мм, толщиной 1,0 мм. В качестве барьерного слоя использовалась прокладка из бескислородной технически чистой меди (марки МОб) длиной 100 мм, шириной 4 мм и толщиной 0,03-0,18 мм и прокладка из технически чистого ниобия (марки НЧ) длиной 100 мм, шириной 4 мм, толщиной 0,05-0,12 мм. Нанесение барьерного слоя из меди и ниобия на молибденовую пластину осуществляли в вакуумной печи по схеме, изображенной на фиг.1, в сборочно-сварочном приспособлении. На молибденовую пластину 1 накладывали прокладки из меди 2 и ниобия 3 и поджимали винтами через керамику с усилием порядка 10-20 КПа, после чего производили пайку.

Режимы пайки: температура нагрева 1100оС, время выдержки 300 с, остаточное давление в камере 3 х 10-4 мм рт.ст.

По длине пластины из стали изготавливали отбортовку высотой 5 мм и собирали по схеме, приведенной на фиг. 2. Собранную конструкцию сваривали электронным лучом в вакууме с расположением луча относительно оси стыка как 2/3 со стороны стали и 1/3 со стороны молибдена с барьерным подслоем. Сварку осуществляли от высоковольтного источника У-250 на установке ЭЛУМ-1 с электроннолучевой пушкой ЦЭП-4.

Режимы сварки: ускоряющее напряжение 17 кВ, ток луча 18-55 мА, скорость сварки 4-12 м/ч, ток фокусировки 137 мА, остаточное давление в камере 10-5 мм рт.ст.

Полученную сварную конструкцию контролировали визуально (увеличение 10 крат) на отсутствие трещин и пор и на герметичность (гелиевый течеискатель). Механические испытания при комнатной температуре 20оС по определению прочности соединения проводили при скорости деформирования 2 мм/мин, а испытания на угол изгиба со скоростью гиба 4 мм/мин. Результаты испытаний представлены в табл. 1 и на фиг.3. Испытания по определению температуры распая соединения молибден-сталь в зависимости от толщины меди в барьерном слое проводились по ГОСТ 20487-75 и представлены на фиг.4.

Из образцов, сваренных на различных режимах, и образцов, сваренных по прототипу [2] были изготовлены шлифы, проведены металлографические исследования и микрорентгеноспектральный анализ сварных швов. Металлографические исследования проводили на микроскопе NEOFOT и на приборе по измерению микротвердости ПМТ-3 (ГОСТ 9450-76). Микрорентгеноспектральный анализ выполняли на микроанализаторе "CAMEBAX MICROBEAM". При проведении количественного анализа использовали дифракционные спектрометры с монохроматорами PET, LIF, TAP. Количественный анализ проводили с шагом 0,001 мм с использованием эталонов металлов высокой чистоты. Результаты полученных исследований приведены в табл. 2.

Как видно из табл. 1 и 2, заявленное соотношение толщин является оптимальным, так как меньшее значение толщин меди и ниобия ведет к растворению барьерного слоя и снижению свойства сварного соединения, если значения толщин меди и ниобия больше заявленного, то ухудшение свойств сварного соединения происходит вследствие снижения прочности паяного шва и снижения пластичности в зоне сплавления.

Формула изобретения

СПОСОБ СВАРКИ ПЛАВЛЕНИЕМ ТУГОПЛАВКИХ МЕТАЛЛОВ СО СПЛАВАМИ НА ОСНОВЕ ЖЕЛЕЗА с применением промежуточной вставки, включающий сборку и расплавление отбортовки из сплава на основе железа, отличающийся тем, что перед сборкой к тугоплавкому металлу через слой меди припаивают слой ниобия, причем толщина слоя меди составляет 0,8 1,4 слоя ниобия.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8



 

Похожие патенты:

Изобретение относится к способам сварки высоколегированных сталей и сплавов с перлитными сталями, а также теплоустойчивых закаливающихся сталей аустенитным швом в конструкциях, эксплуатирующихся при высоких температурах, и может быть использовано в различных областях машиностроения

Изобретение относится к сварочному производству, в частности к способу гигиенической оценки сварочных материалов и устройству для его осуществления

Изобретение относится к технологии сварки и может быть использовано во всех отраслях машиностроения при подготовке кромок свариваемых изделий под сварку

Изобретение относится к сварке, в частности к способам сварки плавлением меди со сталью, и найдет применение в изготовлении электровакуумных приборов

Изобретение относится к сварке соединений из разнородных металлов

Изобретение относится к области сварки и может быть использовано в различных отраслях народного хозяйства

Изобретение относится к области сварки и термической обработки деталей вращения типа роторов из высокопрочных сталей, в том числе роторов для паровых турбин атомных подводных лодок

Изобретение относится к сварке плавлением в среде защитных газов и может быть использовано при изготовлении сложных крупногабаритных листовых конструкций в машиностроительной, авиационной и космической промышленности

Изобретение относится к области машиностроения и может быть использовано в сварочном производстве

Изобретение относится к сварочному производству и может быть использовано в турбомашиностроении для сварки или наплавки дефектов литья из жаропрочных высоколегированных сплавов

Изобретение относится к дуговой сварке плавлением титана и его сплавов и может быть использовано в различных отраслях промышленности при производстве титановых конструкций преимущественно средней и повышенной толщины

Изобретение относится к области машиностроения, преимущественно к сварочному производству

Изобретение относится к машиностроению и может быть использовано при сварке металлических деталей, собираемых в любом пространственном положении
Изобретение относится к сварке, а именно к дуговой сварке изделий из чугуна с шаровидным графитом
Наверх