Способ диагностики плазмы и устройство для его осуществления


H05H1 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)

 

Использование: в измерительной технике для исследования параметров плазмы, в частности низкотемпературной плазмы и разряженной замагниченной плазмы ионосферы Земли и других планет, а также плазмы в стендовых и лабораторных условиях. Сущность изобретения: способ диагностики плазмы с помощью резонансно-импедансного зонда заключается в одновременной подаче на зонд зондирующего сунусоидального напряжения высокой модулированной частоты и напряжения смещения в виде импульсов положительной полярности низкой частоты. Дополнительную информацию о параметрах плазмы получают из низкочастотного измерительного сигнала, формируемого зондовым током на емкости зарядно-разрядной цепи. Непрерывно происходит переключение высокоомного и низкоомного диапазонов измерения. Устройство содержит генератор зондирующего напряжения, генератор напряжения смещения, фильтр, резонансный чувствительный элемент, двухэлектродный зонд, усилитель, амплитудный детектор, вторичную обмотку индуктивности. Дополнительно в устройстве введены: вторичная обмотка индуктивности, выполненная двухдиапазонной, истоковый повторитель, электронный переключатель, синхронно пиковый детектор. 2 с. п. ф-лы, 7 ил.

Изобретение относится к измерительной технике для исследования характеристик низкотемпературной плазмы. Особенностью низкотемпературной плазмы является широкий диапазон плотности свободных электронов, равный 10-2-1012 см-3. Кроме того, в разреженной плазме, где эфф < fнплазма оказывается замагниченной магнитным полем Земли и становится анизотропной средой, параметры которой описываются соответствующими тензорами, что резко усложняет экспериментальное исследование. Чтобы исключить влияние замагниченности на результаты измерений, зондирующая частота fo должна не менее трех раз превышать гиромагнитную частоту электронов fн. Существенную погрешность в измерения вносят приэлектродные ионные слои, окружающие электроды зонда, так как их параметры существенно отличаются от соответствующих параметров невозмущенной плазмы.

Известны радиочастотные способы и устройства, применяемые для диагностики низкотемпературной плазмы, в частности плазмы ионосферы Земли.

Известно, что с помощью импедансметров, работающих на частотах 3,1 и 13 мГц измерены лишь реактивные составляющие входных импедансов зондов, а активные составляющие входных импедансов зондов не измерялись по причине недостаточной чувствительности.

Известен способ, в котором исключена погрешность, вносимая ионным приэлектродным слоем, однако чувствительность по активной составляющей недостаточна.

Недостатками известных способов и устройств для диагностики разреженной плазмы являются низкая чувствительность по активной составляющей входного импеданса, узкий диапазон измерений, охватывающий два порядка измеряемого параметра, узкая информативность измерений, не учитывается погрешность измерения, вносимая приэлектродными слоями.

Наиболее близким аналогом (прототипом) по технической сущности к изобретению является резонансно-импедансный радиозонд с линейно изменяющимся напряжением смещения.

Недостатками прототипа являются низкая чувствительность по активной составляющей импеданса, узкий диапазон измерений параметров плазмы, охватывающий 1,5-2 порядка, узкая информативность измерения, низкая точность измерения.

Цель изобретения повышение чувствительности по верхнему и нижнему пределам измерения, расширение диапазона измерений по верхнему и нижнему пределам, повышение информативности и точности измерений.

Цель достигается путем применения резонансного чувствительного элемента высокой добротности, выполненного по схеме эквивалента последовательного колебательного контура и применения деталей с малыми активными потерями (емкости типа к-10-19, феррита N 3 вч-2-8), применения импульсного напряжения смещения, в этом случае устройство работает и как радиозонд и как электрический импульсный зонд, сведения двух диапазонов измерения.

На фиг. 1 приведена схема предлагаемого устройства; на фиг. 2 и 3 форма напряжения и форма измерительных сигналов; на фиг. 4-7 градуировочные графики устройства.

Структурно-принципиальная схема изобретения (фиг. 1) содержит генератор импульсного напряжения смещения 1, генератор зондирующего синусоидального частотно-модулированного напряжения высокой частоты 2, генератор модулирующего синусоидального напряжения низкой частоты 3, двухэлектродный зонд 4, РЧЭ 5 в комплекте с зарядно-разрядной цепью, состоящей из последовательно соединенных емкости С1 (13) "резистора R114, соединенного с общей точкой измерительной схемы, емкость С1соединена непосредственно со средней точкой обмотки индуктивности и через разделительную емкость с истоковым повторителем 6, автоматический переключатель диапазонов измерений 7, соединенный с выходом пикового детектора 8, истоковый повторитель 9, усилитель высокочастотных сигналов 10, амплитудный детектор 11, синхронно-пиковый детектор 12, синхронизируемый модулирующим напряжением от генератора 3, емкости зарядно-разрядной цепи: 16-20.

Работает устройство следующим образом.

На РЧЭ и зонд одновременно подают от генераторов 1 и 2 импульсное напряжение смещения, амплитуда которого в 3-4 раза превышает потенциал плазмы в призондовой области, и синусоидальное напряжение высокой модулированной частоты f fo f В РЧЭ частотно-модулированное синусоидальное напряжение преобразовывается в синусоидальное амплитудно-модулированное напряжение. Огибающая амплитудно-модулированного напряжения становится измерительным сигналом, по которой определяют измерительную информацию резонансно-импедансного зонда.

Напряжение смещения, зарядив до амплитудного значения зарядно-разрядную цепь и зонд, отключается. В этот же момент зарядно-разрядная цепь начинает разряжаться электронным током насыщения Ieo=const, на емкости зарядно-разрядной цепи формируется низкочастотный измерительный сигнал в виде напряжения U3(t) (фиг. 2). Высокочастотный измерительный сигнал с выхода РЧЭ поступает на истоковый повторитель, а с его выхода на усилитель высокой частоты, затем на амплитудный детектор. С одного из выходов амплитудного детектора измерительный сигнал в виде огибающей АМ напряжения поступает на регистратор, с другого выхода поступает на пиковый детектор, с третьего выхода поступает на синхронно-пиковый детектор, синхронизируемый низкочастотным синусоидальным модулирующим напряжением от генератора 3. В синхронно-пиковом детекторе формируется измерительный сигнал U2(t). С выхода пикового детектора сигналя U1(t) поступает на регистратор и на автоматический переключатель диапазонов в момент, когда уровень сигнала принимает критическое значение U(t) срабатывает автоматический блок переключения диапазонов, устройство переключается с высокоомного диапазона измерений на низкоомный диапазон. С выхода синхронно-пикового детектора измерительный сигнал U2(t) поступает только на регистратор.

На фиг. 2 показаны формы импульсного напряжения и форма низкочастотного измерительного сигнала U3(t).

На фиг. 3 показана форма высокочастотного измерительного сигнала в форме огибающей амплитудно-модулированного синусоидального напряжения.

На фиг. 4 показана форма высокочастотного измерительного сигнала на выходе пиковых детекторов.

Из фиг. 3 и 4 видно, что в случае, когда напряжение смещения на зонде равно и выше потенциала плазмы, т.е. выше точки С, то уровень высокочастотного сигнала U1 понижается до некоторого минимума U. Это значит на этом участке приэлектродный ионный слой нейтрализован (отсутствовал), поэтому результаты измерений имеют достоверное значение. Следовательно, чтобы получить высокую точность и достоверность результатов измерений, расшифровку записи измерительного сигнала нужно производить на участках с минимальным уровнем в каждом периоде напряжения смещения.

Устройство начинает работать на первом, т.е. на высокоомном диапазоне измерений. Уровень выходного измерительного сигнала в зависимости от параметров плазмы будет понижаться и достигнет критического значения U(t), при котором срабатывает электронный автоматический переключатель диапазонов и с помощью ключей К2 (15) и К3(16) зонд переключается на низкоомный диапазон измерений, при этом уровень измерительного сигнала резко повысится, работа устройства продолжается без перерыва. На регистраторе момент переключения диапазонов измерения четко фиксируется.

Перед экспериментом устройство по каждому диапазону измерений градуируется в комплекте с зондом и регистратором. Градуировочные графики, с помощью которых осуществляют расшифровку записи измерительного сигнала, приведены на фиг. 5 и фиг. 6. Кроме того, устройство градуируют по постоянному току с целью определения суммарной емкости C зарядно-разрядной цепи, так как емкость C входит в расчетную формулу при расчете зондового тока насыщения Io. Градуировочный график приведен на фиг, 7.

Расшифровку записи измерительных сигналов производят в следующей последовательности.

Определяют значения U (t) U I (t) U (t) U I (t) по записи измерительного сигнала.

Определяют с помощью градуировочных графиков значения R(t); R'(t); -Cx(t); -Cx'(t).

Определяют с помощью первичных адекватных формул электрофизические параметры плазмы: удельную электропроводность , приращение диэлектрической проницаемости и диэлектрическую проницаемость (t) a/R(t), см/м; '(t) a/R'(t), см/м; (t) отн.ед.

(t) отн.ед.

(t) 1 (t) '(t) 1 '(t) отн.ед. где а постоянная зонда; Со начальная емкость зонда; Сх Сох. Штрих означает низкоомный диапазон.

По измеренным значениям и c помощью известных функциональных связей из совместного решения определяют концентрацию электронов Nе и эффективную частоту столкновений эфф (t) 2,8210-2 см/м; (t) 2,8210-2 см/м;
(t) 3,19109 ;
(t) 3,19109 , где o 2 fo круговая частота зондирующего напряжения.

Определяют давление в зоне зонда
P(t) 1,43 10 -11 эфф (t),атм.

На этом расшифровка измерительной информации резонансно-импедансного зонда окончена.

Расшифровка низкочастотного измерительного сигнала выполняется в следующем порядке.

Определяют потенциал плазмы Uп в точке С
Uп U(OA1)B
Определяют плавающий потенциал Uпл -U(OAч)В.

Определяют температуру электронов Те, используя известные соотношения
Te= (К)
или Te= где е заряд электрона;
= 5,04 постоянная для атмосферы;
mi и me масса иона и масса электрона.

Определяют ток насыщения Iео на участке ВС Iео (А), где U(AA1) изменение напряжения на зонде и зарядно-разрядной цепи за время t;
С суммарная емкость зарядно-разрядной цепи.

Определяют плотность электронного тока насыщения jeo(A/см2)
jeo (A/см2), где S рабочая площадь зонда.

Определяют концентрацию электронов Ne см-3;
Ne 4,031013 (см-3).

Таким образом, применение импульсного напряжения смещения позволило расширить информативность измерений по параметрам Uп, Uпл, Те, Nе. Кроме того, открылась возможность взаимного контроля работы радиозонда и электрического зонда по результатам измерений электронной концентрации. В результате эксперимента получены данные по следующим параметрам: Ne эфф Te Uп Uпл и P которые убедительно характеризуют свойства исследуемой плазмы. В качестве примера осуществления предлагаемого способа можно указать на измерение параметров плазмы в электро-газодинамических установках и плазмы ионосферы Земли.

Изобретение позволяет повысить чувствительность по активной составляющей импеданса, расширить диапазон измерений по верхнему и нижнему пределам измерений, повысить точность измерений, расширить информативность и получить совокупность данных, характеризующих свойства исследуемой плазмы. Сравнение предлагаемого технического решения с прототипом и другими известными решениями того же направления показывает, что предлагаемые способ диагностики плазмы и устройство для его осуществления отличаются от известных высокой чувствительностью по активной составляющей импеданса, широким диапазоном измерений, широкой информативностью и высокой точностью измерений.

Применение предлагаемого устройства возможно не только в области диагностики плазмы, но и в других областях народного хозяйства, в частности в экологии по контролю окружающей среды, водоемов, влажности. Предлагаемое устройство может быть установлено на воздухоплавательных аппаратах, в том числе на космических аппаратах для измерения параметров атмосфер Земли и других планет.


Формула изобретения

1. Способ диагностики плазмы резонансно-импедансным зондом, соединенным с резонансным чувствительным элементом и погруженным в исследуемую плазму, на который одновременно подают зондирующее синусоидальное частотно-модулированное напряжение высокой частоты и линейно изменяющееся напряжение смещения положительной полярности низкой частоты, измерительный сигнал с выхода резонансного чувствительного элемента усиливают и детектируют с помощью амплитудного детектора, при этом измерительную информацию в виде активной и реактивной составляющих входного импеданса зонда получают по огибающей амплитудно-модулированного сигнала на участках с минимальным уровнем сигнала, отличающийся тем, что напряжение смещения подают в виде прямоугольных импульсов с амплитудой, превышающей от трех до четырех раз потенциал плазмы в призондовой области, при этом получают дополнительную информацию о параметрах плазмы по сигналу, формируемому напряжением смещения на зонде.

2. Устройство для диагностики плазмы, содержащее электрический зонд, соединенный с резонансным чувствительным элементом, генератор зондирующего синусоидального напряжения высокой частоты и генератор напряжения смещения низкой частоты, усилитель высокой частоты, вход которого подключен к резонансному чувствительному элементу, а выход соединен с амплитудным детектором измерительного сигнала, отличающееся тем, что резонансный чувствительный элемент выполнен по схеме эквивалента последовательного колебательного контура с вторичной обмоткой индуктивности, выполненной с возможностью изменения индуктивности и соединенной через электронный автоматический переключатель диапазонов измерения с пиковым детектором сигнала, при этом одна ветвь колебательного контура образована в виде индуктивно-емкостного делителя, другая ветвь емкостная, причем генератор напряжения смещения соединен с электронным ключом, соединенным с зарядно-разрядной цепью, состоящей из последовательно соединенных емкости и резистора, включенного в общую точку измерительной схемы, емкость зарядно-разрядной цепи непосредственно соединена со средней точкой вторичной обмотки индуктивности и через разделительную емкость с истоковым повторителем, выход которого подключен к блоку регистрации низкочастотного сигнала, причем генератор зондирующего синусоидального напряжения высокой частоты подключен через проходную емкость к индуктивно-емкостному делителю колебательного контура, при этом вход усилителя высокой частоты подключен к выходу истокового повторителя, вход которого соединен с выходом резонансного чувствительного элемента, а выход усилителя подключен к амплитудному детектору, выходы амплитудного детектора подсоединены к пиковому детектору и синхронно-пиковому детектору, соединенному с генератором модулирующего напряжения низкой частоты, и регистратору амплитудно-модулированного сигнала, причем пиковый и синхронно-пиковый детекторы подключены к регистраторам амплитудно-модулированного сигнала.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7



 

Похожие патенты:

Изобретение относится к ускорительной технике и может быть использовано при разработке и усовершенствовании индукционных ускорителей и накопительных установок с внешней инжекцией ускоряемых частиц
Изобретение относится к ускорителям заряженных частиц, в частности к протонным синхротронам

Изобретение относится к технике ускорения заряженных частиц, к специализированным источникам синхротронного излучения

Изобретение относится к области генерации СВЧ-плазмы и может найти применение при проведении плазмохимических реакций в гомогенных (газах, жидкостях) и гетерогенных средах, включая устранение экологически вредных примесей в выбросах промышленного и бытового характера, локальной и дистанционной очистки атмосферы Земли; в плазменной обработке материалов, включая травление поверхности материалов, напыление, модификацию поверхности материалов, плазменную очистку порошков; при создании плазменных объектов в атмосфере Земли, включая высотные плазменные зеркала для дальней радиосвязи, плазменные антенны, плазменные образования вокруг летательных аппаратов; при проведении научно-исследовательских работ, особенно в исследованиях, требующих пространственно-временной стабильности получения СВЧ-разрядов при низких уровнях СВЧ-мощности и в широком диапазоне давлений газовых сред; в учебных целях, в том числе для демонстрации основных закономерностей зарождения и развития СВЧ-разрядов в газах и их структурных форм, основ плазмохимии; для создания компактных, маломощных и легко транспортируемых установок, создающих СВЧ-плазму, например для проведения спектрального анализа загрязнения почв, других задач аналитической спектрометрии и экологического контроля; в медицинских и биологических приложениях, в том числе в целях дезинфекции и стерилизации объектов и инструмента

Изобретение относится к космической технике, в частности к электрореактивным двигательным установкам, и плазменно-вакуумной технологии, в частности к исполнительным органам систем напыления, сухого травления, ионной очистки материалов, и может использоваться в областях прикладного применения плазменных ускорителей

Изобретение относится к ускорительной технике и может быть использовано в устройствах, содержащих пучки движущихся заряженных частиц

Способ и // 2038707

Изобретение относится к неразрушающему контролю качества ферромагнитных изделий и может быть использовано в машиностроительной и металлургической промышленности

Изобретение относится к неразрушающему контролю материалов и изделий, в частности к контролю твердости ферромагнитных изделий

Изобретение относится к аналитическому приборостроению, в частности к магнитомеханическим компенсационным газоанализаторам для измерения объемного содержания кислорода в газах, и может быть использовано для аттестации поверочных газовых смесей

Изобретение относится к методам диагностики различных патологий, связанных с нарушениями обмена метаболитов (таких как глюкоза, холестерин, лактат, мочевая кислота и др.) и может быть использовано и поэтому рентабельны в применении только для крупных клиник

Изобретение относится к средствам регулирования и контроля технологического оборудования и может быть использовано для определения работоспособного состояния оборудования тепловых электрических станций и нефтеперерабатывающих заводов

Изобретение относится к контролю материалов магнитными средствами и может быть использовано при контроле на подлинность изделий с магнитной записью

Изобретение относится к измерительной технике, в частности к устройствам для измерения удельной электропроводности жидких сред в условиях действия сторонних источников тока, в том числе в локальных объемах с низкой плотностью тока

Изобретение относится к области электростатического разделения частиц и может быть использовано при исследовании электростатических свойств материалов

Изобретение относится к аналитическому приспособлению, в частности к монтажным конструкциям датчика состава газа, и может найти применение в области анализа газовой среды
Наверх