Измеритель удельной электрической проводимости морской воды

 

Использование: в измерительной технике в гидрофизических исследованиях. Сущность изобретения: измеритель удельной электрической проводимости морской воды содержит генератор синусоидального сигнала 1, источник переменного тока 2, первичный измерительный преобразователь (ПИП) 3, два выпрямителя 4, 6, компаратор 5, источник постоянного тока 7, два управляемых ключа 8, 9, коденсатор 10, RS-триггер 11, интегратор 12, преобразователь напряжение - частота 13, делитель частоты 14, регистратор 15, распределитель 16. В измерителе автоматически уравновешивается выпрямленное выходное напряжение первичного ПИП 3 напряжением, накопленным времязадающим конденсатором 10, зарядный ток которого формируется из напряжения генератора 1, питающего ПИП 3, а время заряда устанавливается кратным периоду выходной частоты измерителя. 2 ил.

Изобретение относится к измерительной технике и может быть использовано в гидрофизических исследованиях для измерения удельной электрической проводимости морской воды.

Известен кондуктометр с трехэлектродной ячейкой, содержащий операционный усилитель, согласующий трансформатор с эталонным резистором во вторичной обмотке и источник питания. Принцип действия кондуктометра состоит в автоматическом уравновешивании токов в токовом электроде трехэлектродной ячейки и в цепи эталонного резистора. Величина тока, измеряемая по падению напряжения на эталонном резисторе, пропорциональна электрической проводимости жидкости, в которую погружается кондуктометрическая ячейка.

Недостатком такого кондуктометра является низкая помехоустойчивость аналогового выходного сигнала, а также его зависимость от нестабильности амплитуды переменного напряжения источника питания, что снижает точность измерения.

Известно устройство для измерения удельной электропроводимости жидкости, содержащее последовательно соединенные генератор синусоидального напряжения, первичный функциональный преобразователь и измеритель, второй вход функционального преобразователя подключен к выходу генератора; функциональный преобразователь выполнен в виде двухканального преобразователя напряжение-частота и содержит фазовращатель, два компаратора, источник опорного напряжения, логический блок, интегратор, преобразователи напряжение-частота и частота-напряжение. Принцип работы устройства заключается в уравновешивании длительностей 0 и х импульсов, формируемых компараторами их переменных напряжений Uo и Ux, поступающих с выходов генератора и первичного преобразователя соответственно. Напряжение Ux с помощью фазовращателя приводится в синфазность с напряжением U0. На опорные входы компараторов подаются напряжения с выхода источника опорного напряжения (U0) и по цепи обратной связи с выхода преобразователя частота-напряжение (Ux). В установившемся режиме работы ( 0х) выходная частота устройства пропорциональна измеряемой электрической проводимости.

Недостатком известного устройства является низкая точность измерения, обусловленная наличием фазовращателя в измерительной цепи устройства и вносимой им погрешности синхронизации фаз переменных напряжений U0 и Uх.

Наиболее близким к предлагаемому измерителю по технической сущности и достигаемому результату является устройство для измерения удельной электрической проводимости морской воды, содержащее генератор синусоидального сигнала, выход которого соединен с первичным преобразователем и входом источника опорного напряжения, компаратор, выход которого соединен с последовательно соединенными интегратором, преобразователем напряжение-частота и регистратором; второй вход компаратора соединен с выходом преобразователя частота-напряжение, первый вход которого соединен с выходом преобразователя напряжение-частота, а второй вход с выходом источника опорного напряжения. Принцип работы устройства заключается в автоматическом уравновешивании напряжений Ux и Uп, поступающих на входы компаратора с выходов первичного преобразователя и преобразователя частота-напряжение соответственно.

Недостатком известного устройства является низкая точность измерения, обусловленная нелинейностью синусоиды выходного напряжения генератора и нестабильностью опорного напряжения, а следовательно, нелинейностью зависимости выходного напряжения Uп преобразователя частота-напряжение от изменений амплитуды выходного напряжения генератора.

Цель изобретения повышение точности измерения посредством преобразования синусоидального напряжения генератора в зарядный ток времязадающего конденсатора.

Это достигается тем, что в измеритель удельной электрической проводимости морской воды, содержащий генератор синусоидального сигнала, первичный измерительный преобразователь, компаратор, последовательно соединенные интегратор, преобразователь напряжения в частоту и регистратор, дополнительно введены последовательно соединенные делитель частоты, подключенный входом к выходу преобразователя напряжения в частоту, распределитель импульсов и управляемый RS-триггер, подключенный выходом к входу интегратора, источник переменного тока, соединенный входом с выходом генератора, а выходом с входом первичного измерительного преобразователя, выход которого через выпрямитель соединен с входом компаратора, подключенного выходом к второму входу RS-триггера, последовательно соединенные второй выпрямитель, соединенный входом с выходом генератора, источник постоянного тока, первый, второй управляемые ключи и времязадающий конденсатор, управляющие входы первого, второго ключей соединены соответственно с вторым и первым выходами распределителя, третий выход которого подключен к третьему входу управляемого RS-триггера, четвертый выход распределителя соединен с его вторым входом, второй вывод времязадающего конденсатора соединен с объединенными выходом первого ключа и вторым входом компаратора, первый вывод конденсатора заземлен.

Достижение поставленной цели связано с преобразованием переменного напряжения генератора в зарядный ток времязадающего конденсатора, время заряда которого посредством коррекции частоты преобразователя напряжение-частота устанавливается кратным периоду выходной частоты; напряжение, накопленное конденсатором, компенсирует предварительно выпрямленное выходное напряжение первичного измерительного преобразователя.

На фиг. 1 изображена структурная схема предлагаемого измерителя; на фиг. 2 временные диаграммы сигналов, поясняющие работу измерителя.

Измеритель удельной электрической проводимости морской воды, содержит последовательно соединенные генератор 1 синусоидального сигнала, источник 2 переменного тока, первичный измерительный преобразователь (ПИП) 3, выпрямитель 4 и компаратор 5, последовательно соединенные второй выпрямитель 6, подключенный входом к выходу генератора 1, источник 7 постоянного тока, управляемые ключи 8, 9 и времязадающий конденсатор 10, подключенный вторым выводом к объединенным выходу ключа 8 и второму входу компаратора 5, первый вывод конденсатора 10 заземлен, последовательно соединенные управляемый RS-триггер 11, интегратор 12, преобразователь 13 напряжения в частоту, делитель 14 частоты, объединенный входом с входом регистратора 15, и распределитель 16 импульсов, подключенный первым выходом к R-входу триггера 11, второй S-вход которого соединен с выходом компаратора 5, вторые управляющие входы ключей 8 и 9 подсоединены соответственно к второму и первому выходам распределителя 16, третий выход которого подключен к третьему входу триггера 11, четвертый выход распределителя соединен со своим вторым R-входом.

Измеритель работает следующим образом.

Синусоидальное напряжение Uг генератора 1 преобразуется источником 2 в переменный стабилизированный по амплитуде ток Iя, питающий трехэлектродную ячейку ПИП 3: Iя Uг/Rт2, где Rт2 сопротивление токозадающего резистора источника 2. На выходе ПИП 3 образуется синусоидальное напряжение кривая 17 (на фиг. 2), амплитуда которого обратно пропорциональна удельной электрической проводимости морской воды, в которую погружается ПИП 3. Выпрямитель 4 преобразует переменное напряжение с выхода ПИП 3 в постоянное напряжение U поступающее на первый вход компаратора 5: U K4Iя/ где К4 коэффициент преобразования выпрямителя 4. На втором входе компаратора 5 при этом формируется компенсационное напряжение, накапливаемое времязадающим конденсатором 10 в течение длительности ри выходного импульса распределителя 16.

Выходные импульсы преобразователя 13 (диаграмма 18 на фиг. 2), следующие с частотой f через делитель 14, уменьшающий частоту в К14 раз, поступают на С-вход распределителя 16 (диаграмма 19 на фиг. 2), импульсы на выходах 1-4 которого представлены на диаграммах 20-23 на фиг. 2. Длительность ри импульсов на выходах 1-3 распределителя 16 определяется следующим выражанием: ри= . В течение длительности ри импульса (диаграмма 21 на фиг. 2) с второго выхода распределителя 16, поступающего на управляющий V-вход ключа 8, времязадающий конденсатор 10 заряжается (диаграмма 24, фиг. 2) от источника 7 постоянного тока, управляемого через выпрямитель 6 синусоидальным напряжением Uг генератора 1. Ток заряда конденсатора 10 определяется следующим выражением: I3= , где К6 коэффициент преобразования выпрямителя 6, Rт7 сопротивление токозадающего резистора источника 7. Напряжение Uc на обкладках конденсатора определяется временем з заряда, током заряда Iз и емкостью С: Uc= Максимальное значение напряжения Ucmax, до которого может зарядиться конденсатор 10, определяется длительностью ри: Uc max= По окончании длительности импульса 21 заряд конденсатора 10 прекращается, а с началом следующего цикла работы распределителя 16 в течение длительности импульса (диаграмма 20 на фиг. 2) с его первого выхода, открывающего ключ 8, осуществляется разряд конденсатора 10 (диаграмма 28 на фиг. 2).

Компаратор 5, сравнивающий поступающие на его входы напряжения Uc и U, срабатывает (диаграмма 24 на фиг. 2), если их равенство достигается в течение длительности импульса 21 (см. фиг. 2), т.е. з < <ри. Выходной импульс компаратора 5 (диаграмма 25 на фиг. 2) устанавливает триггер 11 в состояние лог. "1", которое действует на его выходе (диаграмма 26 на фиг. 2) в течение длительности импульса (диаграмма 22 на фиг. 2) с третьего выхода распределителя 16, поступающего на вход 3 управления триггера 11. Состояние лог. "1" на выходе триггера 11 вызывает увеличение выходного напряжения интегратора 12 (диаграмма 27, фиг. 2), что приводит к увеличению частоты f выходных импульсов генератора 13, а следовательно, к уменьшению длительности риимпульса (диаграмма 21, фиг. 2) распределителя 16, т.е. к выравниванию длительностей з и ри(ри_ з).

Если же электрическая проводимость морской воды такова, что напряжение U остается недосягаемым для напряжения Uc в течение длительности ри (диаграмма 28, фиг. 2), сигнал на выходе компаратора 5 будет отсутствовать. Сигнал лог. "0", действующий при этом на выходе триггера 11, вызовет уменьшение выходного напряжения (диаграмма 29 на фиг. 2) интегратора 12. Частота f преобразователя 13 уменьшится, длительность ри возрастет, создавая возможность достижения равенства U Uc в течение длительности ри.

Таким образом, в течение нескольких циклов работы распределителя 16 наступит установившийся режим, характеризующийся условием з ри, т.е. достижением равенства напряжений U Uc на границе временного интервала ри по его окончании. Установившемуся режиму будут соответствовать следующие соотношения: з ри и U Uc.

Uc= U= (1) ри= (2) При идентичности токозадающих резисторов: Rт2 Rт7 и схем выпрямителей K4=K7.

(3) f (4) выходная частота преобразователя пропорциональна удельной электропроводимости морской воды.

Предлагаемый измеритель имеет меньшую погрешность, а также более простую схему и высокую надежность. Лабораторные испытания подтверждают снижение относительной основной погрешности на 0,02% по сравнению с прототипом.

Формула изобретения

ИЗМЕРИТЕЛЬ УДЕЛЬНОЙ ЭЛЕКТРИЧЕСКОЙ ПРОВОДИМОСТИ МОРСКОЙ ВОДЫ, содержащий генератор синусоидального сигнала, первичный измерительный преобразователь, компаратор, последовательно соединенные интегратор, преобразователь напряжения в частоту и регистратор, отличающийся тем, что, с целью повышения точности измерения, в него дополнительно введены последовательно соединенные делитель частоты, подключенный входом к выходу преобразователя напряжения в частоту, распределитель импульсов и управляемый RS-триггер, подключенный выходом к входу интегратора, источник переменного тока, соединенный входом с выходом генератора, а выходом - с входом первичного измерительного преобразователя, выход которого через выпрямитель соединен с первым входом компаратора, подключенного выходом к S-входу RS-триггера, последовательно соединенные второй выпрямитель, соединенный входом с выходом генератора, источник постоянного тока, первый и второй управляемые ключи и времязадающий конденсатор, другой вывод которого, соединенный с выходом второго ключа, подключен к общей шине питания, управляющие входы первого и второго ключей соединены соответственно с вторым и первым выходами распределителя, третий выход которого подключен к третьему входу управляемого RS-триггера, четвертый выход распределителя соединен со своим вторым входом, второй вывод времязадающего конденсатора соединен с объединенными выходом первого ключа и вторым входом компаратора.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к измерительной технике, в частности к устройствам для измерения удельной электропроводности жидких сред в условиях действия сторонних источников тока, в том числе в локальных объемах с низкой плотностью тока

Изобретение относится к измерительной технике и может быть использовано для определения низкой электропроводности жидкостей, например грунтовых или сточных вод, при решении задач экологии

Изобретение относится к технической физике и геофизике

Изобретение относится к измерительной технике, в частности к устройствам для измерения удельной электропроводности жидких растворов и расплавов в условиях действия внешних (сторонних) источников тока в том числе в локальных объемах растворов и расплавов с высокой вязкостью, а также для измерения плотности тока в локальных объемах вязким растворов и расплавов

Изобретение относится к медицине, а именно к стоматологии

Изобретение относится к измерительной технике и может быть использовано при дистанционном измерении влажности пленочно-тканевых материалов в мягких строительных ограждениях и других аналогичных конструкциях для контроля за их долговечностью и надежностью

Изобретение относится к кондуктометрическому контролю и может быть использовано как в промышленных , так и в лабораторных условиях при анализе содержания влаги в многокомпонентных средах, в частности в различных видах углеводородного сырья

Изобретение относится к химии фосфорорганических соединений, в частности к иэобутил-2-(тиметиламмонио)- этилфосфатхлориду, который может быть использован в качестве влагочувствительного материала в датчиках влажности

Изобретение относится к измерительной технике, в частности к измерению электрофизических параметров плодов и овощей, и может быть использовано при определении спелости, пригодности к дальнейшему хранению плодов и овощей, содержания в них нитратов и т.д
Наверх