Способ определения содержания жира и белка в молоке

 

Назначение: техника исследования пищевых продуктов и может найти применение как в пищевой промышленности, так и в сельском хозяйстве. Сущность: при осуществлении способа пробу молока разбавляют, гомогенизируют, облучают лазерным потоком с последующим измерением величины флуктуаций интенсивности рассеянного вперед светового потока, при этом измерение осуществляют под углом 25 - 60 o. 3 ил., 1 табл.

Изобретение относится к технике исследований пищевых продуктов и может найти применение как в пищевой промышленности, так и сельском хозяйстве.

Известен способ определения содержания жира и белка в молоке, предусматривающий облучение контролируемой пробы электромагнитным потоком, измерение полной индикатрисы рассеяния и оптимальных углов рассеяния для каждого из компонентов, установление содержания последних в пробе по интенсивности излучения рассеянного потока под оптимальными углами [1] Из известных способов определения содержания жира и белка в молоке наиболее близким по технической сущности к предлагаемому способу является способ определения содержания жира и белка в молоке, предусматривающий разведение пробы, гомогенизацию, облучение монохроматическим световым потоком с последующим измерением интенсивностей рассеянных вперед и назад световых потоков, а также прошедшего через анализируемую пробу cветового потока, устанавливают средний радиус белковых мицелл.

Основным недостатком указанного способа является низкая точность при определении содержания жира и белка, так как не учитывают средние радиусы жировых шариков.

Задачей изобретения является повышение точности определения содержания жира и белка в молоке. Технический результат повышение точности определения содержания жира и белка достигается тем,что при осуществлении способа определения содержания жира и белка в молоке предусматривающий разведение пробы, гомогенизацию, облучение монохроматическим световым потоком с последующим измерением величины флуктуаций интенсивности рассеянного вперед светового потока, при этом измерение осуществляют под углом 25-60о.

Для регистрации флуктуаций, связанных с броуновским движением частиц жира и мицелл белка, разведенную пробу молока гомогенизируют и заливают в цилиндрическую кювету. Длина волны лазерного излучения выбирается из условий прозрачности рассеивателя (воды) на данной длине волны. Известно, что вклады в рассеяния частиц жира и мицелл белка сравнимы в области углов 25-60о. При угле из этого интервала измеряется корреляционная функция интенсивности рассеянного излучения (Kамминс Г. и Пайк Э. Спектроскопия оптического смещения и корреляция фотонов. М. 1978, с 296-303).

G ()=Iж()exp[-Dжq2]+ +Iб()exp[-Dбq2] где Iж(), Iб() интенсивность рассеянного излучения на частицах жира и белка под углом ; Dж.б. коэффициент диффузии; q проекция вектора рассеяния; время задержки, мс.

Известно, что дисперсная фаза молока в основном состоит из шариков и частиц белка, которые образуют мицеллы, в интервале размеров 2-4 мкм и 0,02-0,3 мкм соответственно. Наличие в дисперсной фазе молока двух основных пиков распределения частиц и разнесенных по размерам более чем на порядок, позволяет одновременно определять из измеренной корреляционной функции флуктуаций интенсивности излучения, функцию распределения частиц по размерам.

На фиг. 1 в логарифмическом масштабе нарисована характерная кривая полученная для молока. Таким обpазом в данном способе вклады в рассеяние частиц жира и мицелл белка разделяются в явном виде. По измеренному G() адаптивным методом гистограмм определяем n(r) распределение частиц жира и белка по размерам по следующим формулам G()= exp-An(r)dr Далее минимизируем по А exp-An(ri)ri-G(j) __ min Ai где Аi гистограммная амплитуда; n(ri) распределение частиц по размерам; ri радиусы частиц, мкм;
rj время задержки на канал, мс.

Решая эти уравнения, определяем искомую n(ri) для частиц жира и мицелл белка в виде гистограммы распределения частиц по размерам. На фиг.2 показана гистограмма распределения частиц жира и белка по размерам. Получаем наборN: R} достаточный для определения содержания данных частиц в молоке, и используя следующие формулы находим:
CF K100; Cp K100 где СFР содержание частиц жира и мицелл белка,
RF,Rр радиусы частиц жира и мицелл белка, мкм;
n(RF), n(Rр) распределение частиц по размерам;
V объем пробы, мл;
К коэффициент разбавления пробы.

В предлагаемом способе используются обычные непроточные кюветы, но не исключена возможность использования проточной кюветы, если пропускание пробы осуществляют со скоростью не более 0,01 см/с.

На фиг.3 изображена схема, поясняющая предлагаемый способ. Пробу молока, разведенную водой, гомогенизируют и заливают в кювету 1. Кювету облучают сфокусированным с помощью объектива 2 непрерывным излучением гелий-неонового лазера 3. Лазерное излучение, проходя через кювету с исследуемой пробой, рассеивается частицами жира и белка. Рассеянное излучение фокусируется с помощью объектива 4 и фиксируется под оптимальным углом фотоэлектронным умножителем ФЭУ 5, сигналы с которого преобразуются с помощью электронного блока 6 в показания процентного содержания жира и белка, а также показывает распределение частиц по размерам.

П р и м е р. Из цельного коровьего молока готовят пробы для проведения измерений. Подготовка пробы заключается в разбавлении 0,1 мл молока дистиллированной водой в 104-105 раз для устранения эффектов многократного рассеяния. Проба заливается в цилиндрическую кювету. Анализируемую пробу освещают лазерным потоком с длиной волны 0,63 мкм. Лазерный пучок фокусируется на кювету с пробой молока, где рассеивается от частиц жира и белка. Рассеянное излучение собирается с помощью фотообъектива и фокусируется фотоэлектронным умножителем ФЭУ, сигнал с системы счета фотонов подается в ЭВМ типа ДВК или IВМ РС, где с помощью программы корреляционной обработки сигнала получаем корреляционную функцию G() интенсивности рассеянного излучения на частицах жира и белка. По измеренному G() методом гистограмм определяем n(R) распределение частиц жира и мицелл белка по размерам
G()= exp-An(r)dr Далее минимизируем по А:
exp-An(ri)ri-G(j) __ min Ai
Решая эти уравнения с помощью программы разработанной для ЭВМ, находим искомую функцию распределения частиц по размерам n(ri) в виде гистограммы. Получаем набор N: R} достаточный для определения содержания жира и белка в молоке и по следующим формулам вычисляем
CF K100; Cp K100
Полученные результаты экспериментальных исследований вместе с данными химического метода показаны в таблице, где использованы следующие обозначения: СFхим данные химического метода анализа содержания жира; CF отклонения от данных химического метода значений содержания жира, полученных предлагаемым способом; RF отклонение среднего радиуса частиц жира полученных предлагаемым способом от данных микроскопированием; Ср содержание белка измеренное предлагаемым способом.

Анализ результатов экспериментальных измерений показывает, что предлагаемый способ по сравнению с химическим методом позволяет получить более высокую точность при определении жира и белка.


Формула изобретения

СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ЖИРА И БЕЛКА В МОЛОКЕ, предусматривающий разведение пробы, гомогенизацию, облучение монохроматическим световым потоком с последующим измерением величины интенсивности рассеянного вперед светового потока, отличающийся тем, что осуществляют измерение флуктуаций интенсивности рассеянного вперед светового потока, при этом измерение осуществляют под углом 25 - 60o и устанавливают распределение частиц по размерам, а определение содержания жира и белка в молоке осуществляют по формуле

где CF, Cр - содержание жира и белка, % ;
RF, Rр - радиусы частиц жира и мицелл белка, мкм ;
n(RF), nRр - распределение частиц по размерам;
V - объем пробы, мл;
K - коэффициент разбавления.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к агропромышленному комплексу, а именно к анализу сырья и продукции, в частности к устройствам для управления аналитическим анализатором

Изобретение относится к измерительной технике и предназначено для определения жирности молока тепловым методом

Изобретение относится к исследованию физикохимических свойств и может найти применение при создании устройств контроля жирности молока

Изобретение относится к молочной промышленности и может быть использовано при определении содержания жира в молоке

Изобретение относится к приборам для анализа жидких нефтесодержащих сред и позволяет упростить конструкцию, уменьшить металлоемкость и сократить время анализа

Изобретение относится к пищевой промышленности, в частности к извлечению молочного жира из жидкости, содержащей молочный жир

Изобретение относится к молочному производству и направлено на повышение точности

Изобретение относится к молочной промышленности, в частности к способам определения содержания жира в молоке

Изобретение относится к средствам измерения и может быть использовано при измерении массовой доли жира в молоке в сельском хозяйстве и молочной промьшшенности

Изобретение относится к области производства овечьей шерсти и может быть использовано в селекционной работе по совершенствованию пород овец при определении фракционного состава жиропота шерсти, позволит определить технологическую ценность жиропота как сырья для получения шерстного жира и ланолина, осуществлять дифференцированный подход при построении технологических процессов первичной обработки шерсти

Изобретение относится к технической древесине в виде круглых лесоматериалов и может быть использовано при сертификации древесины в условиях лесозаготовок, лесного хозяйства и деревообработки при контроле качества круглых лесоматериалов в различных условиях их хранения

Изобретение относится к молочной промышленности и предназначено для определения свободного жира (СЖ) в жидких молочных продуктах

Изобретение относится к молочной промышленности и предназначено для определения содержания жира и белка в молоке и молочных продуктах

Изобретение относится к молочной промышленности и может быть использовано для определения свободного жира в жидких молокосодержащих продуктах с эмульгированным животным и растительным жиром

Изобретение относится к техническому контролю в сыродельной отрасли молочной промышленности. Способ предусматривает вырезание из анализируемого продукта пробы в форме пластинки размером (10×10×2) мм, помещение ее в стеклянную бюксу объемом 10 см3 и массой М1, измерение массы бюксы с пробой продукта М2, высушивание пробы продукта в бюксе при остаточном давлении 70-100 кПа в течение 8-12 ч до получения пористой капиллярной структуры, пятикратное экстрагирование свободного жира по 1 ч органическим растворителем объемом: 1) 3 см3, 2) 2 см3, 3) 2 см3, 4) 2 см3, 5) 2 см3, слив экстракта свободного жира после каждой экстракции в бюксу объемом 50 см3 и массой М3; выпаривание органического растворителя на водяной бане при температуре 60-80°C, измерение массы бюксы со свободным жиром М4 и определение массовой доли свободного жира в продукте по заданной формуле. Достигается упрощение и повышение надежности определения. 2 пр.
Наверх