Светоизлучающее устройство для фотосенсора (варианты)

 

Использование: микроэлектроника, фотосенсоры. Сущность изобретения: светоиспускающее устройство для фотосенсора, включающее два светодиода, размещенные на подложке, фотодиод и прозрачное защитное покрытие. Защитное покрытие выполнено в виде полусферы, расположенной над светодиодами и фотодиодом. Над защитным покрытием расположен слой из эпоксидной смолы, отделенный от него воздушным промежутком с толщиной большей длины волны излучения светодиодов, причем защитное покрытие выполнено из эпоксидной смолы, обеспечивающей поглощение излучения с длинами волн вне диапазона длин волн светодиодов; согласно второму варианту, в светоиспускающем устройстве на защитном покрытии расположен слой из эпоксидной смолы с коэффициентом преломления меньшим коэффициента преломления защитного покрытия. 2 з.п. ф-лы, 7 ил.

Настоящее изобретение в целом относится к светоизлучающему устройству для фотосенсоров и, более точно, к улучшенному светоизлучающему устройству для фотосенсора, который обеспечивает коррекцию изменений в количестве света со светоизлучающего элемента в соответствии с изменениями окружающей температуры. Изобретение далее относится к фотосенсору, использующему такое светоизлучающее устройство.

Известно светоизлучающее устройство для фотосенсора, включающее светодиод, размещенный на подложке, и прозрачное защитное покрытие, которое передает свет с одной стороны на другую сторону конца пальца и обнаруживает изменение в передаче (отражаемости) переданного света, чтобы таким образом выяснить количество протекающей в пальце крови, обработать результирующий сигнал обнаружения и затем оценить пульс, давление в крови и т.п. посредством подсчета. Один из примеров фотосенсора для использования в подобном устройстве раскрыт в [1] В известном устройстве светоизлучающий элемент и светопринимающий элемент размещены с заранее определенным пространством между ними, соответствующим размерам пальца, на очень гибком пленочном субстрате. Прозрачная и очень гибкая пленка размещена или прикреплена к пленочному субстрату так, чтобы покрывать светоизлучающий элемент и светопринимающий элемент.

В известном устройстве фотосенсор надет вокруг пальца так, чтобы конец пальца находился между светоизлучающим элементом и светопринимающим элементом. Фиксирующая лента (например, так называемый скоч) закрепляется вокруг фотосенсора, надетого вокруг пальца. Фотосенсор надежно закрепляется на пальце путем обматывания фиксирующей ленты вокруг фотосенсора с охватыванием поверхности одного конца фиксирующей пленки и обратной поверхности ее другого конца. При подаче питания с главного блока устройства обработки сигнала (не показан) светоизлучающий элемент через разъем на провод излучает свет. Излучаемый свет передается сквозь палец и направляется на светопринимающий элемент. Светопринимающий элемент принимает свет и передает результирующий сигнал через провод и разъем на главный блок устройства обработки сигнала. Устройство обработки сигнала обнаруживает изменение к передаче света на данное время, обрабатывает сигнал этого обнаружения и затем оценивает пульс и давление крови посредством подсчета.

В целом светоизлучающее устройство используется для светоизлучающего элемента, примененного в вышеописанном сенсоре. Светоизлучающее устройство, однако, имеет нежелательное свойство, а именно: его выходная мощность и длина волны света, излучаемого с устройства, варьируются в зависимости от окружающих температур. Если фотосенсор закреплен на живом теле, например пальце, то в пальце происходит сужение кровеносного сосуда или остановка движения крови по кровеносному сосуду, в результате чего снижается температура тела пальца, либо происходит повышение температуры тела пальца из-за увеличения кровяного давления. Таким образом, окружающая температура светоизлучающего элемента изменяется и его выходная мощность и измеряемая длина волны света также варьируются. Необходимо, однако, чтобы выходная мощность светоизлучающего элемента и длина волны света, излучаемого со светоизлучающего элемента, поддерживались постоянными с тем, чтобы точно измерять величину пульса или кровяного давления.

Задачей настоящего изобретения (т.е. технический результат, который должен быть достигнут) обеспечение улучшенного светоизлучающего диода для фотосенсора, который устойчив к воздействию, вызванному изменением температур.

Другой задачей настоящего изобретения является обеспечение улучшенного светоизлучающего устройства для фотосенсора, который позволяет поддерживать количество света со светоизлучающего элемента строго постоянным.

Следующая задача настоящего изобретения обеспечить улучшенный светоизлучающий диод для фотосенсора, который позволяет точно управлять количеством света со светоизлучающего элемента. Еще одной задачей настоящего изобретения является обеспечение простого в изготовлении светоизлучающего устройства для фотосенсора.

Еще одна задача настоящего изобретения обеспечение фотосенсора, включающего улучшенный светоизлучающий диод, устойчивый к воздействию, вызванному изменением температур.

Технические результаты изобретения достигаются за счет того, что в известном светоизлучающем устройстве для фотосенсора на подложке вблизи светодиода размещены дополнительный светодиод и фотодиод, защитное покрытие выполнено в виде полусферы, расположенной над светодиодами и фотодиодом, и над защитным покрытием расположен слой из эпоксидной смолы, отделенный от него воздушным промежутком с толщиной большей длины волны излучения светодиодов, причем защитное покрытие выполнено из эпоксидной смолы, обеспечивающей поглощение излучение с длинами волн вне диапазона длин волн светодиодов, при этом поверхность слоя из эпоксидной смолы выполнена в виде полусферы. В другом варианте исполнения в светоиспускающем устройстве для фотосенсора на подложке вблизи светодиода размещены дополнительный светодиод и фотодиод, защитное покрытие выполнено в виде полусферы, расположенной над светодиодами и фотодиодом, и на защитном покрытии расположен слой эпоксидной смолы с коэффициентом преломления меньшим коэффициента преломления защитного покрытия, причем защитное покрытие выполнено из эпоксидной смолы, обеспечивающей поглощение излучения с длинами волн вне диапазона длин волн светодиодов.

Предпочтительнее, чтобы по меньшей мере один из первого и второго прозрачных слоев формировался из материала, который перехватывает свет, отличный от длины волны спектра, излучаемого со светоизлучающего элемента.

Также предпочтительнее, чтобы промежуток между первым и вторым прозрачными слоями имел полусферическую форму. Коэффициент преломления n1 первого прозрачного слоя и коэффициент преломления n2 второго прозрачного слоя удовлетворяют следующему неравенству: n1 > n2 Если неравенство n1 > n2 соблюдается, то технический результат настоящего изобретения достигается полностью без воздушного зазора.

В соответствии со светоизлучающим устройством для фотосенсора согласно настоящему изобретению на первом прозрачном слое формируется второй прозрачный слой. При формировании второго прозрачного слоя на первом прозрачном слое и промежутке между первым и вторым прозрачными слоями образуется очень тонкий воздушный слой. Коэффициент преломления воздуха меньше, чем у первого и второго прозрачных слоев. Таким образом, количество оптических траекторий света, который испускается со светоизлучающего элемента, затем подвергается полному отражению внутренней поверхностью первого прозрачного слоя и падает на светопринимающий элемент, возрастает. Это позволяет относительно пренебречь количеством света, который входит в живое тело и затем отражается от него. Следовательно, количество света, испускаемого со светоизлучающего элемента, который непосредственно принимает светопринимающий элемент, возрастает.

Указанные отличия, использованные в настоящем изобретении, позволили исключить изложенные выше недостатки, присущие известному устройству того же назначения, а именно, поскольку в соответствии с настоящим изобретением фотосенсор включает светоизлучающее устройство, имеющее улучшенные характеристики. В фотосенсоре могут быть осуществлены точные измерения, устойчивые к воздействию, вызванному изменением температур.

Во время функционирования фотодиод, который представляет собой светопринимающий элемент, размещаемый отдельно от другого светопринимающего элемента, располагается вблизи пластин. Фотодиод обнаруживает изменения в количестве света со светоизлучающего устройства в соответствии с изменением в окружающей температуре. Ток, протекающий через пластины, контролируется таким образом, чтобы корректировать изменение в количестве света. Это делает возможным поддерживать выходную мощность и длину волны света, испускаемого с пластин, постоянными и, таким образом, получать точную информацию о живом теле.

Настоящее изобретение иллюстрируется чертежами, на которых изображено: на фиг. 1 перспективное изображение обычного фотосенсора; на фиг. 2 вид в разрезе фотосенсора на фиг. 1, закрепленного на пальце; на фиг. 3 вид сбоку светоизлучающего устройства для фотосенсора согласно одному из вариантов реализации настоящего изобретения; на фиг. 4 вид сбоку для использования в работе светоизлучающего устройства для фотосенсора согласно одному из вариантов реализации; на фиг. 5 диаграмма, показывающая свойство прозрачности эпоксидной смолы такого типа, который ограничивает диапазон длин волн, используемый настоящим изобретением; на фиг. 6 вид сбоку светоизлучающего устройства для фотосенсора согласно другому варианту реализации настоящего изобретения;
на фиг. 7 вид сбоку для использования при объяснении работы светоизлучающего устройства, изображенного на фиг. 6.

Ниже приводится описание одного из вариантов реализации настоящего изобретения со ссылкой на чертеже фиг. 1-7, согласно которым предложено: светоизлучающее устройство для фотосенсора, содержащее светодиод (1), размещенный на подложке (2), и прозрачное защитное покрытие (3), дополнительный светодиод (4) и фотодиод (5), размещенные на подложке вблизи светодиода, причем защитное покрытие (3) выполнено в виде полусферы из эпоксидной смолы; дополнительный слой из эпоксидной смолы (6), размещенный над защитным покрытием и отделенный от него воздушным пpомежутком (7) с толщиной, большей длины волны излучения светодиодов, при этом защитное покрытие выполнено из эпоксидной смолы, обеспечивающей поглощение излучения с длинами волн вне диапазона длин волн светодиодов, причем поверхность дополнительного слоя выполнена в виде полусферы. Согласно другому варианту исполнения светоизлучающее устройство для фотосенсора содержит два светодиода (1 и 4) и фотодиод (5), размещенные на общей подложке (2), и прозрачное защитное покрытие (3), выполненное в виде полусферы из эпоксидной смолы, расположенной над светодиодами и фотодиодом, также имеет дополнительный слой (6) из эпоксидной смолы с коэффициентом преломления меньшим коэффициента преломления защитного покрытия, размещенного над защитным покрытием, причем защитное покрытие выполнено из эпоксидной смолы, обеспечивающей поглощение излучения с длинами волн вне диапазона длин волн светодиодов.

На фиг. 3 изображен вид сбоку светоизлучающего устройства для фотосенсора согласно предпочтительному варианту реализации настоящего изобретения. Светоизлучающее устройство для фотосенсора включает подложку (субстрат) 2. Пластины LED1 (не показана) и LED2, служащие как светоизлучающие элементы, располагаются на подложке (2). Фотодиод PD, служащий как светопринимающий элемент, который принимает свет, излучаемый с пластин LED1 и LED2, чтобы обнаружить изменения в количестве света с этих пластин в соответствии с изменением окружающих температур, располагается на подложке (2) вблизи от LED пластин. Полусферический прозрачный формовочный материал, например, эпоксидное стекло или нечто подобное, который является первым прозрачным слоем 3, формируется на субстрате 2 так, чтобы покрывать пластины LED1 и LED2 и фотодиод PD. Полусферический прозрачный материал, например, эпоксидное стекло или нечто подобное, который является вторым прозрачным слоем 6, формируется на первом прозрачном слое 3. По меньшей мере один из первого и второго прозрачных слоев 3 и 6 предпочтительнее формируется из материала, который перехватывает свет, отличный от длины волны спектра, излучаемого пластинами LED1 и LED2. В этом варианте реализации для первого прозрачного слоя 3 применяется эпоксидная смола такого типа, который имеет показатель прозрачности, показанный на фиг. 5, и ограничивает диапазон длин волн. Согласно фиг. 5, кривая (1) представляет показатель прозрачности эпоксидной смолы для ограничения диапазона длин волн; 1 обозначают длину волны спектра, испускаемого с LED1 и 2 обозначает длину волны спектра, испускаемого с LED2. Вышеописанная эпоксидная смола для такого применения соответственно выбирается из таких смол, как Toray Hysol THL-5000 A/B, HL 3000 (S) EX-012/HX-021-3 и подобных, изготовляемых компанией Toray Hysol Со, Ltd.

Очень тонкий воздушный слой на фиг. 3 не показан, оборудуется в промежутке между первым и вторым прозрачными слоями 3 и 6 при формировании второго прозрачного слоя 6 на первом прозрачном слое 3. Коэффициент преломления этого воздушного слоя меньше, чем у первого и второго прозрачных слоев 3 и 6.

Со ссылкой на фиг. 4, светоизлучающее устройство для фотосенсора вводится в контакт с живым телом (8). Поскольку воздушный слой с маленьким коэффициентом преломления образуется в промежутке (9) между первым и вторым прозрачными слоями 3 и 6, часть света, излучаемого с пластин LED1 и LED2, претерпевает полное отражение на промежутке (9) и затем достигает фотодиода PD, как обозначено пунктирной линией 5. В этом варианте реализации, поскольку количество света, подвергающегося отражению, увеличивается, количество света, излучаемого с пластин LED1 и LED2, который непосредственно принимается фотодиодом PD, возрастает.

Свет, который рассеивается или отражается живым телом 8, как обозначено пунктирной линией 6, из света, излучаемого пластинами LED1 и LED2 и затем входящего в живое тело (8), отражается на промежутке (9) между первым и вторым прозрачными слоями (3) и (6) и, следовательно, не достигает фотодиода PD. Кроме того, поскольку для первого прозрачного слоя (3) применяется эпоксидная смола, которая имеет показатель прозрачности, указанный на фиг. 5, и ограничивает диапазон длин волн, другой, обозначенный сплошной линией 7 свет, отличный от длины волны света, испускаемого с пластин LED1 и LED2, не может падать на первый прозрачный слой (3) и, таким образом, перехватывает на промежутке (9).

Поскольку светоизлучающее устройство для фотосенсора согласно этому варианту реализации сконструировано таким образом, количество света, которое излучается с пластин и непосредственно падает на фотодиод, возрастает, давая таким образом возможность пренебрегать количеством света, который отражается от живого тела и входит в фотодиод. Таким образом обеспечивается точная обратная связь и, следовательно, точное измерение, устойчивое к воздействию, вызванному изменением температур
Хотя проиллюстрирован случай, когда для первого и второго прозрачных слоев (3) и (6) в вышеуказанном варианте реализации была применена эпоксидная смола, настоящее изобретение не ограничивается этим и может быть применено любое прозрачное вещество, например, стекло или эластомер.

Хотя никаких специальных пояснений по поводу толщины воздушного слоя сделано не было, воздушный слой может иметь толщину, которая образовалась естественным образом при формировании второго прозрачного слоя на первом прозрачном слое.

Детализируя далее, следует отметить, что толщина воздушного слоя может быть просто больше длины волны света, излучаемого с LED пластин.

Более того, хотя в вышеуказанном варианте реализации в качестве примера названо, что первый и второй прозрачные слои (3) и (6) имеют полусферическую форму, настоящее изобретение не ограничивается этим, формирование прозрачных слоев (3) и(6) в полусферической форме облегчает изготовление таких прозрачных слоев.

На фиг. 6 изображен вид сбоку светоизлучающего устройства фотосенсора согласно другому варианту реализации настоящего изобретения. Светоизлучающее устройство для фотосенсора включает подложку (субстрат) 2. Пластины LED1 (не показана) и LED2, служащие как светоизлучающие элементы, размещаются на субстрате 2. Фотодиод PD, который принимает свет, испускаемый с пластин LED1 и LED2, чтобы таким образом обнаруживать изменения в количестве света с пластин в соответствии с изменением окружающей температуры, располагается на субстрате 2 и вблизи LED пластин. Полусферический прозрачный формовочный материал, такой как эпоксидное стекло или нечто подобное, который является первым прозрачным слоем (3), формируется на субстрате 2 так, чтобы покрывать пластины LED1 и LED2 и фотодиод PD. Полусферический прозрачный формовочный материал, такой как эпоксидное стекло или нечто подобное, который является вторым прозрачным слоем (6), формируется на первом прозрачном слое (3). Коэффициент преломления первого прозрачного слоя больше коэффициента преломления второго прозрачного слоя. Вышеописанная прозрачная эпоксидная смола для такого использования соответственно выбирается из таких смол, как например, Toray Hysol THL-500 A/B- HL 3000 (S) EX-0121 НХ-021-3, изготавливаемых компанией Toray Hysol Со, Ltd.

Регулирование коэффициентов преломления осуществляется посредством изменения составов этих смол или посредством изменения темпов смешивания смол. Для производства применяется способ, при котором достигается затвердение первого прозрачного слоя (3) из прозрачного эпоксида и затем достигается затвердение второго прозрачного слоя (6) также из прозрачного эпоксида.

Очень тонкий воздушный слой (на фиг. 6 не показан) образуется в промежутке (9) между первым и вторым прозрачными слоями (3) и (6) на этапе формирования второго прозрачного слоя (6) на первом прозрачном слое (3).

Описание работы устройства: со ссылкой на фиг. 7, светоизлучающий диод для фотосенсора вводится в контакт с живым телом (8). Поскольку коэффициент преломления no1 первого слоя прозрачного (3) больше, чем no2 второго прозрачного слоя (22), часть света, испускаемого с пластин LED1 и LED2, претерпевает полное отражение на промежутке (9) и достигает фотодиода PD, как указано пунктирной линией 5. В этом варианте реализации, поскольку количество света, подвергающегося полному отражению, увеличивается, количество света, испускаемого с пластин, который непосредственно принимается фотодиодом PD, возрастает.

Свет, рассеиваемый или отраженный живым телом (8), обозначенный пунктирной линией 6, из света, который испускается с пластин LED1 и LED2 и затем падает на живое тело (8), претерпевает полное отражение на промежутке (9) между первым и вторым прозрачными слоями (3) и (6) и, следовательно, не достигает фотодиода PD.

Как было указано выше, поскольку светоизлучающее устройство для фотосенсора, согласно настоящему изобретению, сконструировано таким образом, количество света, излучаемого со светоизлучающего элемента, который непосредственно принимается фотодиодом, увеличивается, позволяя таким образом пренебрегать количеством света, отраженного с живого тела. Это позволяет поддерживать постоянное количество света и осуществлять точную обратную связь, обеспечивая, таким образом, точное измерение, устойчивое к воздействию, вызванному изменением температур.

Кроме того, фотосенсор, включающий вышеупомянутый светоизлучающее устройство, обеспечивает точное измерение, устойчивое к воздействию, вызванному изменением температур.

Хотя настоящее изобретение детально описано и проиллюстрировано, абсолютно ясно, что это сделано лишь для примера и не может восприниматься как ограничение, претензии по настоящему изобретению ограничиваются только условиями прилагаемой формулы.


Формула изобретения

1. Светоизлучающее устройство для фотосенсора, включающее светодиод, размещенный на подложке, и прозрачное защитное покрытие, отличающееся тем, что на подложке вблизи светодиода размещены дополнительный светодиод и фотодиод, защитное покрытие выполнено в виде полусферы, расположенной над светодиодами и фотодиодом, над защитным покрытием расположен слой из эпоксидной смолы, отделенный от него воздушным промежутком с толщиной, большей длины волны излучения светодиодов, причем защитное покрытие выполнено из эпоксидной смолы, обеспечивающей поглощение излучения с длинами волн вне диапазона длин волн светодиодов.

2. Устройство по п. 1, отличающееся тем, что поверхность слоя из эпоксидной смолы выполнена в виде полусферы.

3. Светоизлучающее устройство для фотосенсора, включающее светодиод, размещенный на подложке, и прозрачное защитное покрытие, отличающееся тем, что на подложке вблизи светодиода размещены дополнительный светодиод и фотодиод, защитное покрытие выполнено в виде полусферы, расположенной над светодиодами и фотодиодом, на защитном покрытии расположен слой из эпоксидной смолы с коэффициентом преломления, меньшим коэффициента преломления защитного покрытия, причем защитное покрытие выполнено из эпоксидной смолы, обеспечивающей поглощение излучения с длинами волн вне диапазона длин волн светодиодов.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7



 

Похожие патенты:

Изобретение относится к полупроводниковой оптоэлектронике и может быть использовано при создании люминесцентных диодов видимого диапазона излучения

Изобретение относится к оптоэлектронике, в частности к светоизлучающим полупроводниковым диодом

Изобретение относится к технологии получения электролюминесцентных знаковых индикаторов (ЭЛИ) с изменяющимся цветом свечения, применяющихся в устройствах отображения информации и источниках света, и может быть использовано в авиационной, автомобильной, приборостроительной, машиностроительной и других отраслях промышленности

Изобретение относится к области оптоэлектроники и может быть использовано в экспериментальной физике и измерительной технике

Индикатор // 1828556

Изобретение относится к области электронной техники, в частности к полупроводниковым приборам, содержащим несколько элементов, сформированных на общей подложке, а именно к светодиодным устройствам, и может найти применение в полупроводниковой промышленности при разработке и производстве светодиодных устройств, используемых в энергетике, железнодорожном транспорте, черной металлургии, химической, тяжелой и в других отраслях промышленности

Изобретение относится к области электронной техники, в частности к полупроводниковым приборам, содержащим несколько элементов, сформированных на общей подложке, а именно к светодиодным устройствам, и может найти применение в полупроводниковой промышленности при разработке и производстве светодиодных устройств, используемых в энергетике и в других отраслях промышленности, а также в сигнальных осветительных устройствах на автомобильном, железнодорожном, морском и других видах транспорта

Изобретение относится к области полупроводниковой оптоэлектроники, а именно к твердотельным источникам света

Изобретение относится к оптоэлектронной технике, а именно к эффективным, мощным, сверхярким и компактным полупроводниковым диодным источникам спонтанного излучения с узкой диаграммой направленности, которые применяются в устройствах отображения информации: световых указателях, светофорных приборах, полноцветных дисплеях, экранах и проекционных бытовых телевизорах; волоконно-оптических системах связи и передачи информации; при создании медицинской аппаратуры, для накачки твердотельных и волоконных лазеров и усилителей, а также как светодиоды белого освещения взамен вакуумных ламп накаливания и электролюминесцентных ламп

Изобретение относится к полупроводниковой оптоэлектронике и может найти применение в приборах газового анализа, спектрометрах, системах связи

Изобретение относится к способам изготовления или обработки полупроводниковых приборов

Изобретение относится к элементам полупроводниковых приборов и может быть использовано в светодиодах, лазерных диодах, биполярных транзисторах и т.д
Наверх