Катализатор для получения 2,3:4,6-диизопропилиден- -l- сорбофуранозы и способ его приготовления

 

Предложено использовать для получения 2,3:4,6-ди-изопропилиден- a -L-сорбофуранозы (полупродукт синтеза витамина C) форсфорномолибденовые катализаторы с молярным отношением Mo : P = 3 - 12. Катализаторы синтезируют растворением в воде или растворе фосфорной кислоты фаз состава P2O5xMoO3 (x = 6 - 24) или MoO3, предварительно подвергнутых механохимичекой активации, при 20 - 100oC и концентрации исходных соединений 5 - 50% мас. Применение этих катализаторов позволяет повысить выход продукта до 90% и решить проблему регенерации катализаторов. 2 с. и 1 з.п. ф-лы.

Изобретение относится к химии гетероциклических соединений, в частности к усовершенствованию катализаторов получения 2,3:4,6-диизопропилиден- -L-сорбофуранозы (диацетонсорбозы, ДАС) формулы которая используется в медицинской промышленности как полупродукт синтеза витамина C.

В настоящее время ДАС производят реакцией L-сорбозы и ацетона в присутствии олеума, как катализатора [1] Катализатор нейтрализуют в конце каждого цикла реакции. Выход ДАС 75 80% Главный недостаток такого процесса большое количество отходов (главным образом, Na2SO4) до 4 кг на 1 кг ДАС.

Предложено проводить синтез ДАС в присутствии, как катализаторов, гетерополикислот (ГПК) состава: H4SiW12O40nH2O, H3PW12O40nH2O, H5BW12O40nH2O, H4GeW12O40nH2O (n 13 30), в количестве 0,015 0,02 кг на 1 кг сорбозы. Выход ДАС до 80% Применение ГПК позволяет исключить образование отходов Na2SO4, а образующиеся соли ГПК после соответствующей обработки могут быть возвращены в процесс [2, прототип] Однако способ "соответствующей обработки" не указан. Анализ известных данных по химии ГПК показал, что экологически чистых методов регенерации W-ГПК нет, а известные методы (например, эфирной экстракцией из водного раствора в присутствии HCl или H2SO4 [3] ) сопровождаются потерей 20 30% W, использованием посторонних реагентов и столь большим количеством сточных вод, что преимущества применения W-ГПК для синтеза ДАС теряются. Использовать ГПК лишь 1 раз, без регенерации, также экономически не целесообразно. Кроме того, при использовании W-ГПК выход ДАС недостаточно велик.

Изобретение решает задачи разработки более активных катализаторов синтеза ДАС на основе ГПК и метода их приготовления.

Поставленные задачи решаются применением для синтеза ДАС катализаторов на основе фосфорномолибденовых ГПК, полученных с помощью механохимической активации. Наши исследования показали, что ГПК H3PMo12O40, H7PMo11O39, H3PMo9O31, H6P2Mo5O23 более активны в синтезе ДАС, чем W-ГПК. Причем их активность увеличивается при увеличении отношения Mo P. Однако синтез этих ГПК в индивидуальном виде сложен, а устойчивость их невелика в растворах они находятся в равновесном состоянии друг с другом. Смеси этих ГПК также проявляют высокую каталитическую активность, что позволяет с успехом применять их для синтеза ДАС. Практически полезны катализаторы с суммарным молярным отношением Mo P 3 12. Верхний предел этого отношения соответствует предельной растворимости MoO3 в растворах H3PO4. При Mo:P<3 получаются недостаточно активные катализаторы.

Известен способ синтеза смесей фосфорномолибденовых ГПК с суммарным молярным отношением Mo: P= 1 10 путем взаимодействия MoO3 и водного раствора H3PO4 при 100 140oC и давлении 0 5 ати в течение 6 24 ч [4, прототип] Недостатки способа: длительность синтеза, большая энергоемкость, необходимость применения гидротермальных условий, невозможность получения катализаторов с высокими отношениями Mo P (по примерам Mo:P7,7).

Указанные недостатки преодолеваются, если исходные соединения для синтеза катализаторов предварительно подвергнуть механохимической активации. Исходными соединениями служат оксид молибдена MoO3 или фазы состава P2O5xMoO3 (x 6 24), полученные после термической обработки отработанных катализаторов синтеза ДАС. Исходные соединения подвергают механохимической активации в любом аппарате, пригодном для этих целей. Активированный MoO3 растворяют в растворе H3PO4 при молярном отношении Mo:P=3 12. Активированные фазы состава P2O5xMoO3 растворяют в воде. Растворение производят при перемешивании при температуре 20 100oC и концентрации в воде исходных соединений 5 50 мас. Время полного растворения 1 30 мин. Уменьшение температуры растворения ведет к резкому увеличению времени синтеза катализатора. Увеличение концентрации исходных соединений свыше 50% приводит к неполному их растворению. После растворения раствор упаривают досуха и получают сухой катализатор. Выход катализатора 100% по Mo во всех случаях.

Аналогичным способом (при Mo:P=9), но со специфической выдержкой, можно получать индивидуальную ГПК H6P2Mo18O62 [5] которая, однако, мало активная и в синтезе ДАС не используется.

Применение механохимической активации исходных соединений позволяет полностью и быстро перевести их в раствор с минимальными затратами энергии.

Практическая полезность предлагаемых катализаторов и метода их синтеза заключается в следующем: 1) увеличение выхода ДАС до 90% 2) уменьшение стоимости катализаторов (Mo дешевле, чем W); 3) экологическая чистота метода синтеза (полное отсутствие отходов, низкая энергоемкость); 4) возможность регенерации и многократного использования катализаторов.

Отличительными признаками предлагаемого изобретения являются: 1) использование в качестве катализаторов получения ДАС смесей фосфорномолибденовых ГПК с суммарным молярным отношением Mo:P=3-12 без их разделения на компоненты; 2) использование для синтеза катализаторов как исходных реагентов MoO3 и фаз состава P2O5xMoO3 (x=6 24); 3) предварительная механохимическая активация исходных реагентов.

Активность фосфорномолибденовых катализаторов проверяли в синтезе ДАС, как в [2]
Изобретение иллюстрируется следующими примерами.

Пример 1. 20 г MoO3 подвергают механохимической активации в центробежной планетарной мельнице при числе оборотов 10 с-1 в течение 20 мин. Затем MoO3 суспендируют в 400 мл воды, добавляют 7,72 мл раствора H3PO4 концентрации 3 моль/л. Молярное отношение Mo:P 6. Суспензию перемешивают при 20oC 30 мин, при этом образуется чистый зеленый раствор. Раствор упаривают досуха и получают сухой катализатор.

Синтез ДАС ведут в термостатируемом реакторе объемом 20 л, снабженном мешалкой и аппаратом Сакслета. В реактор помещают 15 л ацетона, 1 кг сорбозы и полученный катализатор, а в аппарат Сакслета загружают 10 кг цеолита марки NaA. Включают обогрев реактора и доводят смесь до кипения. Перемешивание при кипении продолжают 3 часа. Затем перемешивание прекращают, реактор охлаждают до -20oC и выдерживают 0,5 ч. Реакционную смесь нейтрализуют 20%-ным раствором аммиака до pH 8. Из раствора отгоняют ацетон. К сиропу добавляют 5 л воды, затем отгоняют под вакуумом 3 л воды с окисью мезитила. Из водного раствора ДАС экстрагируют дихлорэтаном (2 раза по 10 л). Экстракт упаривают досуха и получают 1,156 кг ДАС (выход 80%).

Для идентификации продукта используют метод газо-жидкостной хроматографии. Условия: колонка 2 м x 3 мм, наполненная фазой 10% ПЭГ-3000 на хроматоне N-AW зернения 0,2 0,25 мм, промытой кислотой, температура термостата 195oC, температура испарителя 250oC, 60 мл/мин. N2, датчик ионизации в пламени. Анализ подтвердил, что выделенный продукт ДАС.

Пример 2. 20 г MoO3 подвергают механохимической активации, как по примеру 1. Затем MoO3 суспендируют в 200 мл воды, добавляют 5,15 мл раствора H3PO4 концентрации 3 моль/л. Молярное отношение Mo:P 9. Суспензию перемешивают при 60oC 10 мин, при этом MoO3 полностью растворяется с образованием зеленого раствора. Раствор упаривают досуха и получают сухой катализатор.

Активность катализатора в синтезе ДАС проверяют, как по примеру 1. Получают 1,228 кг ДАС (выход 85%).

Пример 3. 20 г MoO3 подвергают механохимической активации, как по примеру 1. Затем MoO3 суспендируют в 40 мл воды, добавляют 3,86 мл раствора H3PO4 концентрации 3 моль/л. Молярное отношение Mo:P 12. Суспензию нагревают до кипения и перемешивают 2 мин, при этом MoO3 полностью растворяется. Раствор упаривают досуха и получают сухой катализатор.

Активность катализатора в синтезе ДАС проверяют, как по примеру 1. Получают 1,3 кг ДАС (выход 90%).

Пример 4. 20 г MoO3 подвергают механохимической активации, как по примеру 1. Затем MoO3 суспендируют в 200 мл воды, добавляют 15,44 мл раствора H3PO4 концентрации 3 моль/л. Молярное отношение Mo:P 3. Суспензию перемешивают при 60oC 10 мин, при этом MoO3 полностью растворяется с образованием зеленого раствора. Раствор упаривают досуха и получают сухой катализатор.

Активность катализатора в синтезе ДАС проверяют, как по примеру 1. Получают 1,055 кг ДАС (выход 73%).

Пример 5. Получают катализатор и используют его в синтезе ДАС, как по примеру 2. Водный раствор, оставшийся после экстракции ДАС дихлорэтаном, упаривают досуха. Сухой остаток прокаливают при 600oC в течение двух часов и получают 20 г фазы состава P2O519MoO3. Фазу подвергают механохимической активации, как по примеру 1. Порошок растворяют в 100 мл воды при перемешивании при 50oC за 15 мин. Раствор зеленого цвета упаривают досуха и получают сухой катализатор с молярным отношением Mo:P 9.

Активность катализатора в синтезе ДАС проверяют, как по примеру 1. Получают 1,228 кг ДАС (выход 85%).

Пример 6. Получают катализатор и используют его в синтезе ДАС, как по примеру 3. Водный раствор, оставшийся после экстракции ДАС дихлорэтаном, упаривают досуха. Сухой остаток прокаливают 2 ч при 600oC и получают 20 г фазы состава P2O524MoO3. Фазу подвергают механохимической активации, как по примеру 1. Полученный порошок растворяют в 100 мл воды при перемешивании при 20oC за 30 мин. Раствор упаривают досуха и получают сухой катализатор с молярным отношением Mo:P 12.

Активность катализатора в синтезе ДАС проверяют, как по примеру 1. Получают 1,3 кг ДАС (выход 90%).

Пример 7 (сравнительный, по прототипу [4])
20 г MoO3 суспендируют в 400 мл воды, добавляют 7,72 мл раствора H3PO4 концентрации 3 моль/л. Молярное отношение Mo:P 6. Смесь перемешивают при кипении. Полное растворение MoO3 происходит не менее, чем за 10 ч. Раствор упаривают досуха и получают катализатор, содержащий 30 - 60% ГПК H6P2Mo18O62, образовавшейся за счет значительной длительности синтеза.

Активность катализатора в синтезе ДАС проверяют, как по примеру 1. Получают 0,867 кг ДАС (выход 60%).

При увеличении отношения Mo:P > 6 растворение MoO3 при 100oC происходит только частично (до достижения отношения Mo:P 6).

Пример 8 (сравнительный). Фазу состава P2O518MoO3 получают, как по примеру 4, но не подвергают механохимической активации. Порошок перемешивают в 200 мл кипящей воды. Через 10 ч в раствор переходит 67% фазы с достижением отношения Mo:P 6. Оставшийся в осадке MoO3 растворить не удается. Таким образом, без предварительной механохимической активации фазы регенерировать фосфорномолибденовый катализатор с отношением Mo:P > 6 невозможно, а регенерация катализаторов с Mo:P=3-6 связана с большими энергозатратами.

Как видно из приведенных примеров, применение фосфорномолибденовых катализаторов позволяет повысить выход ДАС до 90% а применение для их синтеза механохимической активации позволяет резко сократить время синтеза, уменьшить энергозатраты, получать и регенерировать катализаторы с отношениями Mo:P= 6-2.


Формула изобретения

Катализатор для получения 2,3:4,6-диизопропилиден--L- сорбофуранозы на основе гетерополикислот, отличающийся тем, что представляет собой смесь фосфорномолибденовых гетерополикислот с суммарным молярным отношением Мо Р=3 12.

2. Способ приготовления фосфорномолибденового катализатора по п. 1 для получения 2,3:4,6-диизопропилиден-a-L-сорбофуранозы путем растворения в воде или растворе фосфорной кислоты исходных соединений молибдена при 20 - 100oC и концентрации исходных соединений 5 50 мас. с последующим упариванием раствора досуха, отличающийся тем, что исходные соединения предварительно подвергают механохимической активации.

3. Способ по п. 2, отличающийся тем, что как исходные соединения используют оксид молибдена MoO3 или фазы состава P2O5хMoO3 (x 6 24).



 

Похожие патенты:

Изобретение относится к технологии приготовления катализатора для окислительно-восстановительных процессов

Изобретение относится к катализаторам и способам их приготовления для процессов эффективного удаления оксидов азота из отходящих газов

Изобретение относится к способам получения гетерогенных катализаторов, в частности катализаторов крекинга

Изобретение относится к способам получения никель-алюмо-хромового катализатора и может быть использовано в химической промышленности для тонкой очистки водородсодержащих газов от оксидов углерода методом каталитического гидрирования примесей до метана

Изобретение относится к способам приготовления катализаторов, в частности медномагниевых катализаторов, для глубокого окисления органических соединений и может быть использовано в химической и нефтехимической промышленности

Изобретение относится к нефтепереработке, в частности к способам приготовления катализаторов, предназначенных для использования в гидрогенизационных процессах с целью гидроочистки нефтяных фракций

Изобретение относится к эфирам низших кислот, в частности к переработкефракции метилацетата, образующейся в ^процессе получения уКсусНой кислоты окислением ацетальдегида

Изобретение относится к катализу, в частности к приготовлению катализатора для окисления н-бутилена в метилэтилкетон

Изобретение относится к катализу, в частности к приготовлению катализатора для окисления н-бутилена в метилэтилкетон

Изобретение относится к каталитической химии, в частности к приготовлению молибденсодержащего катализатора для окисления циклогексана

Изобретение относится к технологии и катализаторам очистки газов от паров органических веществ, применяемым в химической промышленности и позволяющим повысить эффективность процесса за счет увеличения срока службы катализатора

Изобретение относится к способам регенерации отработанных катализаторов, используемых в процессах синтеза полупродуктов витаминов и других веществ
Наверх