Способ получения волластонита

 

Использование: технология получения синтетического волластонита. Сущность: способ получения волластонита на основе электротермического фосфорного шлака включает введение в шлак добавок при восстановительной атмосфере, резкое охлаждение расплава и термическую обработку. В качестве добавок используют сульфаты натрия и бария, оксид ванадия и фторид кальция и вводят их до соотношения в расплаве Na2O:SiO20,06, (V2O5+BaO):SiO20,04, CaF2:SiO2<0,1.

oC в течение 0,5 ч и при температуре 950-1010oC в течение 2,5 ч. В качестве добавки, содержащей CaF2, BaSO4, V2O5, может быть использован ванадиевый кварцит. Предложенный способ позволяет повысить выход готового продукта и снизить температуру термообработки. 2 з.п. ф-лы.

Изобретение относится к технологии получения синтетического волластонита из шлаков, например, фосфорных, для использования в керамической, лакокрасочной и фарфоровой промышленности, а также в производстве пластмасс и других областях промышленности.

Известен способ получения волластонита, включающий обжиг тщательно гомогенизированный шихты, состоящей из 38,5% тонкомолотого кварцевого песка, 54,5% мела, 2,5% соды, 4,5% оксида алюминия при температуре 1150-1200oC с последующей выдержкой в течение 2 ч. Выход волластонита составляет 70% [1] Недостатками способа являются его сложность, связанная с необходимостью тонкого помола и тщательной гомогенизацией, а также низкий выход волластонита и высокая температура синтеза.

Известен способ получения волластонита из смеси кварцевого песка и известняка. Обжиг тонкомолотой гомогенизированной смеси проводят при температуре 1250-1350oC в течение 0,5-1 ч в присутствии добавок оксидов металлов, взятых в количестве 1-2 мас. от исходной смеси. В качестве добавок используют оксиды Mg, Zn, Be, Sr, Ni(II), Co(II), Fe(III) или хрома [2] Недостатки способа необходимость тонкого помола, высокая степень гомогенизации и высокая температура синтеза.

Известен способ получения волластонита [3] в котором гомогенную смесь, содержащую 85% туфа, измельченного до частиц размером 100 мкм, и 15% каолинитовой или каолинит-иллитовой глины, увлажняют до влажности 28% и экструдируют цилиндрики диаметром и высотой 30 мм. Высушенный полуфабрикат обжигают при температуре 1250oC и выдержкой 0,5 ч. Недостатки способа - необходимость тонкого помола, высокая степень гомогенизации и высокая температура синтеза.

Наиболее близким решением к предлагаемому по технической сущности и достигаемому результату является способ получения волластонита из фосфорного шлака, согласно которому расплав шлака резко охлаждают в воде с образованием стекловидных гранул, из которых затем удаляют примеси отстаиванием. Гранулы подвергают термообработке при температуре 1150-1200oC в окислительной атмосфере для образования кристаллического волластонита. Перед термической обработкой к шлаку добавляют глиноземсодержащие вещества и вещества, содержащие оксиды кальция. Шихту измельчают и гомогенизируют [4] Недостатки данного способа высокая температура термообработки гранул, которая ведет к образованию псевдоволластонита и не позволяет получить выход волластонита выше 85% Кроме того, операции по тонкому измельчению, гомогенизации, прессовке и сушке усложняют процесс получения кристаллического волластонита.

Техническим результатом, на достижение которого направлено изобретение, является повышение выхода готового продукта, получение волокнистого волластонита и снижение температуры термообработки.

Это достигается тем, что в предлагаемом способе получения волластонита из фосфорного шлака в расплав электротермофосфорного шлака в восстановительной атмосфере вводят CaO и SiO2, содержащие добавки, а также сульфаты натрия и бария, оксид ванадия и фторид кальция до соотношения в расплаве Na2O: SiO20,06; (V2O5+BaO): SiO20,04; CaF2:SiO2<0,1, в качестве добавки, содержащей CaF2, BaSO4, V2O5 используют ванадиевый кварцит, расплав резко охлаждают, полученные гранулы подвергают термообработке в две стадии при температурах 720-740oC в течение 0,5 ч и при температуре 950-1010oC в течение 2,5 ч.

Процессу кристаллизации волластонита способствует суммарное каталитическое и модифицирующее воздействие фторидов, сульфидов, оксидов и ванадатов (CaF2, FeS2, V2O5, Na2O, Ba(VO3)2), образующихся за счет введения добавок в расплав при восстановительной атмосфере.

Вводимые в шлак добавки задают из расчета на SiO2 основу силикатного расплава волластонитового состава, при этом соотношение основных компонентов в шихте CaO:SiO2 соответствует стехиометрическому содержанию их в волластоните и корректируется за счет введения CaO и SiO2, содержащих добавок.

Фторид кальция, добавляемый в расплав до соотношения CaF2:SiO2<0,1 при кристаллизации в области температур 700-800oC, быстро выделяется в чрезвычайно тонкодисперсном состоянии, образуя центры кристаллизации волластонита и, таким образом, ускоряет процесс кристаллизации расплава, способствует повышению выхода волластонита до максимального, снижает температуру его кристаллизации и создает условия для формирования мелкозернистых кристаллов.

При получении в расплаве соотношения CaF2:SiO2>0,1 процесс кристаллизации расплава становится самопроизвольным и неконтролируемым, нарушается порядок выделения фаз, в качестве первичной фазы выделяется геленитокерманит, в связи с чем снижается выход волластонита.

Введение сульфата натрия при восстановительной атмосфере способствует образованию сульфида железа, который является катализатором кристаллизации волластонита, поскольку имеет близкие волластониту параметры решетки, что позволяет увеличить выход волластонита. Кроме того, образующийся в результате восстановительных процессов оксид натрия влияет на скорость роста кристаллов из расплава. Так, при соотношении в расплаве Na2O:SiO2<0,06 за счет образования нестабильной кристаллической фазы, в которую входит натрий, увеличивается скорость роста кристаллов волластонита при низких температурах, тогда как при соотношении в расплаве Na2O:SiO2>0,06 замедляется рост кристаллов волластонита, наблюдается энергичное газовыделение на последних стадиях кристаллизации, что объясняется обогащением расплава перед фронтоном кристаллизации оксидом натрия и "вскипанием" его, когда концентрация оксида превысит критическую, и как следствие структурная неоднородность получаемого продукта волластонита и снижение его выхода.

Введение оксидов ванадия совместно с сульфатом бария до получения в силикатном расплаве соотношения (V2O5+BaO): SiO20,04 приводит к образованию метаванадатов бария, которые затем переходят в пированадаты, кристаллизующиеся в низкотемпературной области и имеющие параметры решетки, близкие к параметрам решетки кристаллизующейся фазы волластонита, что способствует кристаллизации волокнистого волластонита в низкотемпературной области и увеличению его выхода. Продукт реакции взаимодействия V2O5 и BaSO4-SO2 в условиях восстановительной атмосферы образует с оксидами железа дополнительно сульфид железа, который, как было показано выше, является катализатором кристаллизации волластонита и также способствует увеличению выхода готового продукта волластонита.

Кроме того, ионы ванадия в силикатных расплавах ведут себя подобно ионам фосфора, усиливая процессы расслоения и сдвигая весь процесс кристаллизации в более низкотемпературную область.

Введение оксидов ванадия совместно с сульфатом бария до получения в силикатном расплаве соотношения (V2O5+BaO):SiO2>0,04 не только не способствует катализированной кристаллизации волластонита, но и влияет на характер фазовых превращений и сдвигает весь процесс кристаллизации в более высокотемпературную область за счет образования ортованадата бария, кристаллизующегося при температуре выше 1100oC с параметрами кристаллической решетки, отличными от параметров кристаллической решетки волластонита.

Таким образом, введение добавок в фосфорный шлак в указанных комбинации и соотношениях позволяет провести направленную кристаллизацию волластонита, т. е. выделить из расплава максимальное его количество, снизить температуру термической обработки и получить волокнистую форму кристаллов волластонита.

Термическая обработка гранул на первой стадии проводится при температуре 720-740oC и обусловлена кинетикой зародышеобразования. Так, установлено, что для полной кристаллизации необходимо первоначально выделить в 1 мм гранул резко охлажденного расплава от 109 до 1016 зародышей, число выделившихся зародышей при этой температуре в течение 0,5 ч лежит в указанном интервале. Дальнейшее повышение температуры сопровождается снижением среднего числа зародышей почти в два раза. Температура второй стадии кристаллизации 950-1010oC отвечает максимуму роста кристаллов и достигает максимума в течение 2,5 ч.

Таким образом, предлагаемая технология получения гранул из фосфорного шлака и разработанный режим их термической обработки позволяет провести направленную кристаллизацию волластонита с выходом готового продукта выше 95% снизить температуру кристаллизации и получить волластонит с волокнистой формой кристаллов.

По указанной технологии был получен волластонит. Качество полученного продукта оценивалось по содержанию волластонита и по характеру получаемой микроструктуры.

Пример 1. Исходными материалами для получения волластонита служили: электротермический фосфорный шлак следующего химического состава, мас. SiO2-36,7; CaO 44,4; Al2O3 3,6; MgO 2,46; Feобщ 0,1; F 0,6; P2O5 1,76; ппп 7,2; кварцит следующего состава, мас. SiO2 80,5; CaO 2,5; Al2O3 1,62; MgO 0,4; Fобщ 1,15; Na2O 0,13; ппп 3,2; известняк CaCO3; сульфат натрия; оксид ванадия; фторид кальция.

Для получения волластонита в расплав шлака при температуре 1250oC и восстановительной атмосфере вводили добавки до получения в расплаве следующих соотношений компонентов: Na2O:SiO2=0,06; (V2O5+BaO):SiO2=0,04; CaF2: SiO2=0,09.

В результате плавки получен силикатный расплав следующего состава, мас. SiO2 47,33; CaO 29,62; Al2O3 2,46; MgO 1,5; Na2O 2,83; V2O5 0,98; Feобщ 0,57; CaF2 4,25; P2O5 2,07; BaO 0,9.

Полученный расплав резко охлаждали и подвергали двухстадийной термической обработке.

На первой стадии нагревали до температуры 720oC и выдерживали при этой температуре 0,5 ч, затем температуру в печи поднимали до 1010oC и выдерживали в течение 2,5 ч. Полученный продукт изучали рентгенографически и кристаллооптически, последний на 95% представлен низкотемпературной формой волластонита, форма кристаллов волокнистая.

Пример 2. Исходными материалами для получения волластонита служили: электротермический фосфорный шлак следующего химического состава, мас. SiO2 40,2; CaO 44,2; Al2O3 3,45; MgO 3,28; Feобщ 0,13; F 2,79; P2O5 1,62; ппп 1,23; кварцит следующего состава, мас. SiO2 85,2; CaO 1,3; Al2O3 1,8; MgO 0,5; Fобщ 1,87; ппп 5,8; известняк CaCO3; сульфат натрия; оксид ванадия; фторид кальция.

Для получения волластонита в расплав шлака при температуре 1250oC и восстановительной атмосфере вводили добавки до получения в расплаве следующих соотношений компонентов: Na2O:SiO2=0,055; (V2O5+BaO):SiO2=0,036; CaF2:SiO2= 0,06.

В результате плавки получен силикатный расплав следующего состава, мас. SiO2 49,1; CaO 38,5; Al2O3 2,5; MgO 1,98; Na2O 2,72; V2O5 0,95; Feобщ 0,5; CaF2 2,96; P2O5 1,54; BaO 0,08.

Полученный расплав резко охлаждали и подвергали двухстадийной термической обработке.

На первой стадии нагревали до температуры 730oC и выдерживали при этой температуре 0,5 ч, затем температуру в печи поднимали до 1000oC и выдерживали в течение 2,5 ч. Полученный продукт изучали рентгенографически и кристаллооптически, последний на 96% представлен низкотемпературной формой волластонита, форма кристаллитов волокнистая.

Пример 3. Исходными материалами для получения волластонита служили: электротермический фосфорный шлак следующего химического состава, мас. SiO2 37,64; CaO 44,31; Al2O3 0,83; MgO 4,33; Feобщ 0,5; F 3,15; P2O5 2,03; ванадиевый кварцит следующего состава: мас. SiO2 76,65; CaO 0,71; Al2O3 2,4; MgO 0,27; Feобщ 1,85; C 7,52; V2O5 0,65; BaSO4 0,78; CaF2 1,8; сульфат натрия.

Для получения волластонита в расплав шлака при температуре 1250oC и восстановительной атмосфере вводили добавки до получения в расплаве следующих соотношений компонентов: Na2O:SiO2=0,046; (V2O5+BaO):SiO2=0,025; CaF2: SiO2=0,064.

Плавку вели в токе аргона. Продолжительность плавки 30 мин, в результате получен силикатный расплав следующего состава, мас. SiO2 48,21; CaO 31,88; Al2O3 4,3; MgO 3,83; Na2O 2,2; V2O5 0,74; Feобщ 0,60; CaF2 3,1; P2O5 2,2; BaO 0,46.

Полученный расплав резко охлаждали и подвергали двухстадийной термической обработке.

На первой стадии нагревали до 740oC и выдерживали при этой температуре 0,5 ч, затем температуру в печи поднимали до 950oC и выдерживали в течение 2,5 ч. Полученный продукт изучали рентгенографически и кристаллооптически, последний, по данным рентгенофазового анализа, на 97% представлен низкотемпературной формой волластонита, форма кристаллов - волокнистая.

Формула изобретения

1. Способ получения волластонита на основе электротермического фосфорного шлака, включающий введение добавок, резкое охлаждение расплава с получением гранул и термообработку полученных гранул в окислительной атмосфере, отличающийся тем, что добавки сульфаты натрия и бария, оксид ванадия и фторид кальция, вводят в расплав шлака при восстановительной атмосфере до соотношения в расплаве Na2O SiO2 0,06; (V2O5 + BaO) SiO2 0,04; CaF2 SiO2 < 0,1, а термообработку осуществляют в две стадии при температуре 720 - 740oС в течение 0,5 ч и при температуре 950 1010oС в течение 2,5 ч.

2. Способ по п.1, отличающийся тем, что в расплав шлака дополнительно вводят CaO- и SiO2-содержащие добавки.

3. Способ по п.1, отличающийся тем, что в качестве добавки, содержащей CaF2, BaSO4, V2O5, используют ванадиевый кварцит.



 

Похожие патенты:

Изобретение относится к теплоэнергетике и стройиндустрии и может быть использовано для получения шлакоситаллов при сжигании твердого топлива в барботируемом расплаве

Изобретение относится к переработке расплавов металлургических шлаков, а именно к получению литых изделий

Изобретение относится к промышленности строительных материалов, к способам получения легковесных шлаковых блоков из шлаков никелевого производства

Изобретение относится к способам комплексной безотходной переработки шлаков фосфорного производства

Изобретение относится к способам получения шлаковой пемзы

Изобретение относится к технологии получения вяжущего из р.аспадаю-^ ; щихся шлаков ферросплавного производства, которое может найти применение в промьшшеиности строительных материалов.Цель изобретения -'снижение трещиг/ ностойкости при твердении за счет обеспечения равномерного измеж^ния в 'объеме.В качестве твердых присадок целесообразно применять глиноземсодержа- |цие отходы производств, содержащие не менее 74 мае.% А1^0з и примеси свободного металлического алюминия, 'кремнезем и другие, а также/отходы с повышенным содержанием .свободного

Изобретение относится к безотходной переработке фосфорных шлаков

Изобретение относится к производству строительных материалов и может найти применение в производстве шлаковой пемзы для получения легких бетонов Целью изобретения является повышение однородности распределения и размера пор Расплав шлака предварительно охлаждают дискретно в 2-5 этапов до температуры, составляющей 1-1 4 температуры солидуса, при общей скорости охлаждения 180 500&deg;С/с, а затем в траншее Шлаковая пемза имеет насыпную плотность фракции 10-20 мм 643-751 кг/м, средний размер пор 0 67-1 39мм предулы отклонения пор от среднего размера (

Изобретение относится к способам обработки шлаков, например доменных, используемых при производстве шлакосодержащих вяжущих материалов в промышленности строительных материалов

Изобретение относится к промышленности строительных материалов, в частности к изготовлению легковесных шлаколитых блоков

Изобретение относится к гелиотехнике и может быть использовано для изготовления жароупорных изделий различных конфигураций и размеров для технологических процессов термообработки материалов, например, в металлургической и стекольной отраслях промышленности

Изобретение относится к шихтам для получения плавленного оксида магния, используемого в электротехнической промышленности, например, в производстве трубчатых электронагревателей малого диаметра

Изобретение относится к технологии получения керамических электроизоляционных материалов и может быть использовано для производства трубчатых электронагревателей (ТЭН) малого диаметра

Изобретение относится к способам получения плавленого оксида магния, применяемого в электротехнической промышленности в качестве наполнителя для трубчатых электронагревателей

Изобретение относится к металлургии, в частности к оборудованию для сверхбыстрой закалки расплава керамических, преимущественно оксидных, материалов, и может применяться для получения гранул или пластинок неметаллических материалов в аморфном состоянии в виде неравновесных кристаллических фаз, а также гранул и плавленнолитых блоков кристаллических материалов
Наверх