Электролитический конденсатор

 

Использование: радиоэлектроника. Сущность изобретения: устройство содержит корпус, в котором размещены свернутые в рулон анод, пропитанные электролитом бумажные прокладки и катод в виде пористой пленки нитрида титана толщиной 0,2-3 мкм, что позволяет увеличить удельную емкость. 2 ил., 2 табл.

Изобретение относится к технологии элементов радиоэлектроники и может быть использовано в производстве алюминиевых оксидноэлектролитических конденсаторов.

Известен электролитический конденсатор, содержащий намотанные в виде рулона и размещенные в корпусе фольговый анод, бумажные прокладки, пропитанные электролитом, и фольговый катод. В известном конденсаторе в качестве катода используется алюминиевая фольга с пористой поверхностью, полученной в результате травления [1] Недостатком такого конденсатора является низкая удельная емкость катодной фольги, которая не превышает 220 мкФ/см2 при толщине фольги 30 мкм.

Наиболее близким техническим решением является электролитический конденсатор, содержащий намотанные в виде рулона и размещенные в корпусе анод, бумажные прокладки, пропитанные электролитом, и катод, выполненный в виде пористой пленки толщиной 0,1-5 мкм. В качестве материала катода он содержит титан, хром.

Недостаток этого конденсатора невысокая удельная емкость катодной фольги, составляющая 1000-1220 мкФ/см2 на толщине 30 мкм из-за сложности формирования пористой пленки из титана или хрома. В результате удельная емкость электролитического конденсатора также невысока [2] Для того чтобы удельная емкость конденсатора не отличалась от удельной емкости анода, определяющего емкость конденсатора, более чем на 10% должно выполняться условие Cк10Cа, где Cк удельная емкость катода; Cа удельная емкость анода.

Удельная емкость современной анодной фольги составляет 45 50 мкФ/см2 при 30 В. Соответственно удельная емкость катода, позволяющая полностью реализовать удельную емкость анода, должна быть не менее 450 500 мкФ/см2.

Выпускаемая катодная фольга не отвечает этим требованиям.

В основу изобретения поставлена задача усовершенствования электролитического конденсатора, в котором применение нового материала пористой пленки на катодной фольге позволило бы повысить удельную емкость катодной фольги и за счет этого увеличить удельную емкость конденсатора.

Задача достигается тем, что в электролитическом конденсаторе, содержащем намотанные в виде рулона и размещенные в корпусе анод, бумажные прокладки, пропитанные электролитом, и катод, выполненный в виде пористой пленки толщиной 0,2 3 мкм, нанесенной на алюминиевую фольгу или конденсаторную бумагу, в качестве материала катода он содержит нитрид титана.

Сравнение изобретения с прототипом позволило установить, что оно отличается от последнего материалом пористой пленки, в прототипе титан или хром, в изобретении нитрид титана. Данный отличительный признак обеспечивает соответствие заявляемого изобретения критерию "новизна". При изучении других известных технических решений в данных и смежных областях техники было установлено, что нитрид титана используется в качестве пленки, для формирования защитных, декоративных и износостойких покрытий. Однако использование нитрида титана в виде пористой пленки для образования катода алюминиевых электролитических конденсаторов с целью повышения его удельной емкости не было обнаружено. Таким образом, предлагаемое изобретение соответствует критерию "изобретательский уровень".

Удельная емкость катодной фольги конденсатора зависит от пористости поверхности и коррозионной устойчивости в электролите.

Нитрид титана, нанесенный на обе стороны катодной фольги, обладает развитой поверхностью, хорошей электропроводимостью и теплопроводностью, термостойкостью и коррозионной устойчивостью к рабочему электролиту конденсаторов, хорошей адгезией к подложке без ее специальной очистки. В результате повышается удельная емкость катодной фольги, которая достигает 1500 2000 мкФ/см2.

На фиг. 1 изображен разрез пакета обкладок конденсатора с катодом в виде пористой пленки нитрида титана, нанесенной на алюминиевую фольгу или конденсаторную бумагу; на фиг. 2 графики изменения удельной емкости и тангенса угла потерь электролитического конденсатора в сравнении с аналогами при испытаниях на долговечность.

Конденсатор состоит из анодной фольги 1, бумажных прокладок 2, пропитанных электролитом, пористого тонкопленочного катода 3, нанесенного на алюминиевую катодную фольгу или конденсаторную бумагу 4.

Пример 1. Катоды электролитических конденсаторов типа К50-35 изготавливают созданием пористой пленки нитрида титана на обеих сторонах алюминиевой фольги толщиной 50 мкм методом плазменно-дугового напыления. Пористую пленку наносят на гладкую алюминиевую фольгу, крацованную алюминиевую фольгу, травленую алюминиевую фольгу (высоковольтную и низковольтную) и измеряют удельную емкость катодной фольги.

Пористая пленка из нитрида титана составляет 1 и 2,5 мкм. Минимальная толщина пористой пленки нитрида титана (0,2 мкм) обусловлена необходимостью формирования сплошного покрытия.

Максимальная толщина (3 мкм) выбирается из условия незарастания пор пористой пленки при соблюдении соотношения толщины двухсторонней пористой пленки и подложки во избежание возникновения трещин.

При толщинах пористой пленки нитрида титана менее 0,2 мкм и выше 3 мкм удельная емкость катодной фольги падает.

Результаты измерений по сравнению с катодами, выполненными в виде пористой пленки из титана или хрома, приведены в табл. 1.

Из табл. 1 видно, что нанесение слоя пористого нитрида титана на алюминиевую фольгу увеличивает удельную емкость катодной фольги в 2,5 20 раз в зависимости от состояния поверхности исходной фольги.

Пример 2. Катоды электролитических конденсаторов типа К50-35 изготавливают созданием пористой пленки нитрида титана одновременно на две стороны алюминиевой фольги методом электронно-лучевого испарения. Пакет, состоящий из послойно расположенной анодной фольги, бумажной прокладки, катодной фольги и второй бумажной прокладки, сворачивают в рулон и помещают в корпус. Затем измеряют удельную емкость конденсаторов. Результаты измерений по сравнению с конденсаторами, содержащими катод, выполненный в виде пористой пленки из титана или хрома, приведены в табл. 2.

Из табл. 2 видно, что конденсаторы, изготовленные согласно настоящему изобретению, обладает удельной емкостью на 20% больше удельной емкости известных конденсаторов.

При испытании конденсаторов типа К50-35 на долговечность с предлагаемой катодной фольгой 1 в сравнении с травленной алюминиевой 3 и напыленной титаном 2 наиболее устойчивые параметры оказались у фольги с покрытием из нитрида титана (см. фиг. 2).

Емкость таких конденсаторов оставалась стабильной при испытаниях свыше 10000 ч.

Формула изобретения

Электролитический конденсатор, содержащий намотанные в виде рулона и размещенные в корпусе анод, бумажные прокладки, пропитанные электролитом, и катод, выполненный в виде пористой пленки толщиной 0,2 3 мкм, нанесенной на алюминиевую фольгу или конденсаторную бумагу, отличающийся тем, что в качестве материала пленки он содержит нитрид титана.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:
Изобретение относится к электро и радиотехнике, в частности, к изготовлению электролитических конденсаторов

Изобретение относится к области электронной техники и, в частности, может быть использовано в конденсаторостроении

Изобретение относится к области электронной техники

Изобретение относится к области электротехники и может быть использовано для создания устройств, аккумулирующих электрическую энергию

Изобретение относится к электротехнике и может быть использовано в производстве электрохимических конденсаторов с двойным электрическим слоем с высокими удельными энергетическими и мощностными характеристиками, которые способны запасать и отдавать электрическую энергию с большой скоростью

Изобретение относится к области электротехнической промышленности и может быть использовано в производстве асимметричных электрохимических конденсаторов с водным электролитом

Изобретение относится к области электротехники, точнее к электрохимическим конденсаторам или конденсаторам с двойным электрическим слоем, и может быть использовано в качестве способа изготовления неполяризуемого гидроксидноникелевого электрода для электрохимического конденсатора с щелочным электролитом

Изобретение относится к области электротехники, касается особенностей конструктивного выполнения электрохимических конденсаторов с двойным электрическим слоем и может быть использовано для создания устройств, применяемых в транспортных средствах для обеспечения запуска двигателей внутреннего сгорания (ДВС), а также для комплектования энергетических блоков, работающих длительное время в буферном режиме

Изобретение относится к области электротехники, в частности к изготовлению катодной фольги для электролитических конденсаторов и способу ее получения

Изобретение относится к области электротехники, в частности к созданию двухслойных конденсаторов, поляризованный электрод которых содержит смешанный активированный углерод, состоящий из, по меньшей мере, двух видов активированного углерода, включающих расширяющийся активированный углерод и не расширяющийся активированный углерод с различными удельными поверхностями, при этом удельная поверхность смешанного активированного углерода не меньше чем 900 м2/г и меньше 1900 м2/г

Изобретение относится к технологии изготовления электролитических конденсаторов, в частности к катодной фольге для электролитических конденсаторов и способу получения

Изобретение относится к электро- и радиоэлектронной технике и может быть использовано при разработке и производстве конденсаторов с двойным электрическим слоем (ДЭС), в частности в производстве конденсаторных накопителей энергии (НЭ)
Изобретение относится к производству высокоемких электрических конденсаторов и позволяет повысить электрическую емкость и запасаемую энергию

Изобретение относится к области электротехники и может быть использовано в производстве конденсаторов с двойным электрическим слоем (ДЭС) с высокими удельно-энергетическими характеристиками, способных запасать и отдавать электрическую энергию с большой скоростью

Изобретение относится к электротехнике, в частности к конструкции низковольтных накопительных конденсаторов

Изобретение относится к области электротехники и может быть использовано для создания устройств, аккумулирующих электрическую энергию

Изобретение относится к электротехнике, в частности к конденсаторостроению

Изобретение относится к электротехнике и может быть использовано в производстве электрохимических конденсаторов с двойным электрическим слоем с высокими удельными энергетическими и мощностными характеристиками, которые способны запасать и отдавать электрическую энергию с большой скоростью

Изобретение относится к электротехнике, в частности к конструкции низковольтных накопительных конденсаторов

Изобретение относится к электротехнике, в частности к конструкции низковольтных накопительных конденсаторов

Изобретение относится к области электротехники, а именно к технологии изготовления конденсаторов с двойным электрическим слоем, и может быть использовано при изготовлении источников питания или накопителей электрической энергии
Наверх