Способ определения функционального резерва миокарда

 

Изобретение относится к медицине, кардиологии. Сущность изобретения: у пациента синхронно регистрируют механограмму сердца и элетрокардиосигналы в ортогональной системе отведений, формируя сигнал, пропорциональный модулю пространственного вектора сердца. Начиная с момента появления комплекса QRS вырабатывают сигнал, пропорциональный интегралу модуля пространственного вектора сердца. В момент начала систолы желудочков формируют сигнал первой переменной, численно равной значению сигнала, пропорционального интегралу модуля пространственного вектора сердца. В момент окончания QRS формируют сигнал второй переменной, численно равный значению сигнала, пропорционального интегралу модуля пространственного вектора сердца в этот момент. Показатель функционального резерва миокарда вычисляют как отношение разности значений сигналов второй и первой переменных к значению сигнала второй переменной. Способ позволяет определить функциональный резерв миокарда неинвазивным путем, без применения нагрузочных проб.

Изобретение относится к медицинской технике, а именно к способам функциональной диагностики состояния сердечно-сосудистой системы.

Широко известно, что ранняя диагностика различных патологических состояний миокарда во многом определяет успех их терапевтической коррекции (Профилактика в детском и юношеском возрасте сердечно-сосудистых заболеваний, проявляющихся в зрелые годы: время действовать// Доклад комитета экспертов ВОЗ. Серия технических докладов 792. ВОЗ. Женева, 1992, с.102).

Исследования биомеханики сердца (Фатенков В.Н. Биомеханика сердца в эксперименте и клинике. -М. Медицина, 1990, с. 37-74) позволили установить, что при отсутствии патологии миокарда систола желудочков начинается до завершения процесса его деполяризации, то есть раньше момента окончания комплекса QRS электрокардиограммы. Иначе говоря, в норме механическое сокращение желудочков возникает до достижения всеми кардиомиоцитами состояния электромеханического сопряжения (МакДональд Т.Ф. Электромеханическое сопряжение. Связь медленно входящего тока с сокращением /Физиология и патофизиология сердца. В 2-х т. Т.1 Пер. с англ./Под ред. Н.Сперелакиса. -М. 1988, с.241-245).

Однако при реализованной сердечной недостаточности одним из ее обязательных инструментальных признаков является заметное увеличение продолжительности периода напряжения левого желудочка времени от начала зубца Q комплекса QRS ЭКГ до начала фазы изгнания (Комаров Ф.И. Ольбинская Л.И. Начальная стадия сердечной недостаточности. -М. Медицина, 1978, с.37). Это означает, что в патологии механическое сокращение желудочков наступает уже после завершения комплекса QRS ЭКГ, то есть лишь после того, как все кардиомициты достигнут состояния электромеханического сопряжения.

В связи с этим при отсутствии патологии сердца следует говорить о существовании определенного функционального резерва миокарда, который может быть мобилизован для реализации механического сокращения при предъявлении к сердцу дополнительных требований (например, физическая нагрузка) (Комаров Ф.И. Ольбинская Л. И. Начальная стадия сердечной недостаточности. -М. Медицина, 1978, с. 37). В случае же страдания сердечной мышцы этот резерв может быть затрачен на компенсацию нарушенной функции сердца, причем еще до появления признаков сердечной недостаточности. По мнению авторов настоящего изобретения, получаемая при массовых обследованиях информация о величине функционального резерва миокарда на доклинических стадиях заболеваний сердца (при отсутствии признаков нарушения сократительной способности, поскольку достаточность механической функции сердца обеспечивается мобилизацией компенсаторных механизмов миокарда) может на практике создать предпосылки для максимальной эффективности лечения.

Известно, что в функциональной диагностике для оценки состояния механической функции сердца используют информацию, получаемую на основе фазового анализа сердечного цикла; в частности известен способ определения сократительной способности миокарда (а.с. СССР N 1113089 кл. МПК A 61 B 5/00, опубл. 15.09.84), в соответствии с которым путем проведения поликардиографии и расчета нагрузочных характеристик сердца в каждом цикле сердечных сокращений измеряют максимальную скорость изгнания, систолическое и диастолическое давление, длительность изометрии и изгнания и по величине колебаний нагрузочных характеристик диагностируют сердечную недостаточность (в том числе на доклинической стадии).

С помощью указанных способов удается выявить либо клинически очерченные степени сердечной недостаточности, либо скрытые, но при условии воздействия на организм дозированных физических нагрузок, что возможно только при наличии специального оборудования и соответствующих показаний у пациента, перечень которых существенно меньше (Ламбич И.С. Стожич С.П. Стенокардия. -М: Медицина, 1990, с.121-122), чем перечень противопоказаний к проведению нагрузочных проб (там же, с.122 124).

Известно применение для функциональной диагностики состояния сердечно-сосудистой системы способов на основе исследования механической функции сердца методом эхокардиографии (Клиническая ультразвуковая диагностика: Руководство для врачей /Под ред. Мухарлямова Н.М. -М. Медицина, 1987, с.142-158), которые обладают наиболее высокой чувствительностью по сравнению с другими способами, что позволяет с успехом использовать их для анализа сократительной способности миокарда. Также известен способ диагностики сердечной недостаточности, включая доклиническую стадию, на основе ультразвуковой локации с использованием эффекта Допплера, предусматривающий исследование скорости кровотока в нижней полой вене на вдохе и выдохе (а.с. СССР N 1584905, кл. МПК A 61 B 5/02, опубл.15.08.90).

Существенным недостатком этих способов является то, что получаемые количественные значения оценочных параметров при исследования зависят от пространственного положения датчика ультразвукового сигнала; это обуславливает высокую зависимость величины погрешностей от квалификации исследователя. Кроме того, эти способы, хотя и используют для диагностики ранних (доклинических) форм нарушений механической функции сердца, но уже реализованных, а не потенциальных.

Наиболее близким по совокупности существенных признаков к предлагаемому способу является определение функционального резерва миокарда (а.с. СССР N 1 477 378, кл. A 61 B 5/02) по разности показателей перфузии миокарда до и после нагрузки электростимуляцией, которые вычисляются на основе эхокардиографии и рентгенконстрастой вентрикулографии.

Способ относится к числу инвазивных и требует участия высококвалифицированных, узкопрофильных специалистов, больших временных и материальных затрат, что не позволяет его использовать при массовых обследованиях.

Задачей изобретения является получение количественного значения показателя функционального резерва миокарда неинвазивным путем, без использования нагрузочных проб и без участия специалистов высокой квалификации, при минимальных временных и материальных затратах.

Техническим результатом реализации способа может быть динамическое наблюдение за состоянием функционального резерва миокарда различных групп населения, а также выработка статистических критериев, необходимых для диагностики ранних, доклинических форм нарушений функционального состояния миокарда при массовых профилактических обследованиях населения различных возрастов и установление степени риска развития сердечной недостаточности.

Сущность изобретения заключается в том, что в способе определения функционального резерва миокарда, включающем получение исходных информационных сигналов и вычисление количественных значений показателя резерва, в качестве исходных информационных сигналов используют соответствующие ортогональным проекциям вектора сердца электрокардиосигналы, которые получают с датчиков ортогональной системы отведений, и сигнал с датчика механической функции сердца, который устанавливают на груди пациента в области верхушечного толчка, в течение одного из кардиоциклов синхронно регистрируют электрокардиосигналы и формируют сигнал, пропорциональный модулю пространственного вектора сердца, в том же кардиоцикле определяют момент появления комплекса QRS и начиная с этого момента вырабатывают пропорциональный интегралу модуля пространственного вектора сердца сигнал, в анализируемом кардиоцикле по появлению положительного фронта сигнала механической функции сердца определяют момент начала систолы желудочков, в который формируют сигнал первой переменной, численно равный значению сигнала, пропорционального интегралу модуля пространственного вектора сердца, в течение того же кардиоцикла определяют момент окончания комплекса QRS, в который формируют сигнал второй переменной, численно равный значению сигнала, пропорционального интегралу модуля пространственного вектора сердца, в этот момент, и вычисляют показатель функционального резерва миокарда, как отношение разности значений сигналов второй и первой переменных к значению сигнала второй переменной.

При этом технический эффект достигается: благодаря тому, что из названных исходных информационных сигналов электрокардиосигналы получают в ортогональной системе отведений (тем самым обеспечивается возможность наиболее полно использовать те способы количественного анализа сигналов, которые отвечают современным биофизическим представлениям о структуре электрического генератора сердца (Титомир Л.И. Рутткай-Недецкий И. Анализ ортогональной электрокардиограммы. -М. Наука, 1990, с.3), в том числе характеризовать относительное число кардиомиоцитов, достигших состояния электромеханического сопряжения, величиной интеграла модуля пространственного вектора сердца); за счет же синхронной регистрации электрокардиосигналов достигается высокая точность определения показателя функционального резерва миокарда; благодаря тому, что датчик механической функции сердца, необходимый для фиксации момента начала сокращения желудочков, располагается на груди пациента в области верхушечного толчка (чем обеспечивается максимальный уровень сигнала при минимальной его задержке во времени от момента начала сокращения желудочков до достижения механической волной поверхности тела); кроме того, благодаря вычислению показателя функционального резерва миокарда, как отношение разности значений сигналов второй и первой переменных к значению сигнала второй переменной, становится возможным установить относительное число функционально-активных кардиомиоцитов, не достигнувших стадии электромеханического сопряжения к моменту начала механического сокращения желудочков (и тем самым не принявших на этом этапе участия в совершаемой механической работе), что и позволяет рассматривать их в качестве функционального резерва миокарда, выражаемого в форме количественного показателя.

Способ осуществляется следующим образом.

Для получения исходных информационных сигналов на теле пациента размещают электроды согласно одной из ортогональных систем отведений ЭКГ, которая обеспечивает формирование электрокардиосигналов X(t), Y(t) и Z(t), соответствующих трем взаимно перпендикулярным проекциям вектора сердца (Титомир Л. И. Рутткай-Недецкий И. Анализ ортогональной электрокардиограммы. -М: Наука, 1990, с. 37-51), а на груди пациента в области верхушечного толчка устанавливают датчик механической функции сердца.

В течение одного из кардиоциклов синхронно регистрируют электрокардиосигналы X(t), Y(t) и Z(t) и вырабатывают сигнал, пропорциональный модулю пространственного вектора сердца В исследуемом кардиоцикле определяют моменты появления и окончания комплекса QRS (Титомир Л. И. Рутткай-Недецкий И. Анализ ортогональной электрокардиограммы. -М. Наука, 1990, с.88-98). Начиная с момента появления комплекса QRS вырабатывают сигнал, пропорциональный величине интеграла модуля D(t) пространственного вектора сердца. В этом же кардиоцикле формируют сигнал первой переменной C1, присваивая ему численное значение сигнала, пропорционального интегралу модуля пространственного вектора сердца, в момент начала систолы желудочков (устанавливаемый по появлению положительного фронта сигнала с датчика механической функции сердца), и сигнал второй переменной C2, принимая его численно равным значению сигнала, пропорционального интегралу модуля пространственного вектора сердца, в момент окончания комплекса QRS электрокардиограммы.

После завершения комплекса QRS вычисляют показатель функционального резерва миокарда R, как отношение разности значений сигналов второй и первой переменных к значению сигнала второй переменной R=(C2 C1) C2 По величине показателя количественно оценивают функциональный резерв миокарда, учитывая, что малой величине показателя резерва соответствует и малый функциональный резерв миокарда.

Предлагаемый способ позволяет на ранних (доклинических) стадиях заболевания сердца оценивать функциональный резерв миокарда по величине его показателя, равного отношения разности сигнала переменной, количественно отражающий общее число кардиомиоцитов, принявших участие в деполяризации желудочков в течение кардиоцикла, и сигнала переменной, количественно соответствующей числу кардиомиоцитов, принявших участие в процессе деполяризации на момент начала систолы желудочков, к сигналу переменной, количественно отражающей общее число кардиомицитов, участвовавших в деполяризации желудочков в течение кардиоциклов. Необходимо принять во внимание, что чем меньше величина показателя резерва, тем меньше функциональный резерв миокарда, что может быть обусловлено нарушениями в сердечной мышце.

Использование предлагаемого способа в практической деятельности позволит путем систематических обследований снизить риск выполнения профессиональных обязанностей, вызванный неконтролируемым развитием заболевания, когда дефицит механизмов компенсации может привести к внезапному нарушению нормального функционирования сердца в экстремальной ситуации, при условии отсутствия внешних причин для мобилизации резервных механизмов компенсации сократительной способности миокарда (физическая или психическая нагрузка, влияние медикаментов, обладающих изотропным действием и др.).

Формула изобретения

Способ определения функционального резерва миокарда, включающий получение исходных информационных сигналов и вычисление количественных значений показателя резерва, отличающийся тем, что в качестве исходных информационных сигналов используют соответствующие ортогональным проекциям вектора сердца электрокардиосигналы, которые получают с датчиков ортогональной системы отведений и сигнал с датчика механической функции сердца, который устанавливают на груди пациента в области верхушечного толчка, в течение одного из кардиоциклов синхронно регистрируют электрокардиосигналы и формируют сигнал, пропорциональный модулю пространственного вектора сердца, в том же кардиоцикле определяют момент появления комплекса QRS и, начиная с этого момента, вырабатывают пропорциональный интегралу модуля пространственного вектора сердца сигнал, в анализируемом кардиоцикле по появлению положительного фронта сигнала с датчика механической функции сердца определяют момент начала систолы желудочков, в который формируют сигнал первой переменной, численно равный значению сигнала, пропорционального интегралу модуля пространственного вектора сердца, в течение того же кардиоцикла определяют момент окончания комплекса QRS, в который формируют сигнал второй переменной, численно равный значению сигнала, пропорционального интегралу модуля пространственного вектора сердца в этот момент, и вычисляют показатель функционального резерва миокарда, как отношение разности значений сигналов второй и первой переменных к значению сигнала второй переменной.



 

Похожие патенты:

Изобретение относится к медицинской технике, а именно к ортезам и ортезированию, а также к электростимуляционным способам и устройствам

Изобретение относится к медицине и может быть использовано в области биомеханики, в частности для оценки качества ходьбы больных с нарушением двигательной функции

Изобретение относится к медицине, а именно к перинатологии, являющейся разделом акушерства, и предназначено для прослушивания сердцебиений плода и использования в приборах для кардиомониторинга плода (фетальных мониторах) в целях диагностики состояния плода и выявления нарушений его развития

Изобретение относится к аппарату, который нужно поместить на голову человека для того, чтобы получить информацию о правильном или неправильном положении спины во время выполнения различной работы в положении стоя или сидя
Изобретение относится к медицине, физиологии

Изобретение относится к медицинской технике и может быть использовано для измерения органов, опухолей, объема легкодеформируемых тканей в труднодоступных полостях, органах; в онкологии и других областях медицины

Изобретение относится к медицине, а именно, к стоматологии

Изобретение относится к медицине, в частности, к стоматологии и может быть использовано для определения болевой чувствительности слизистой оболочки полости рта перед лечением и протезированием зубов

Изобретение относится к медицине, а именно к перинатологии, являющейся одним из разделов акушерства и гинекологии, и предназначено для диагностики состояния плода беременной женщины
Изобретение относится к медицине, а именно к функциональной диагностике, кардиологии

Изобретение относится к области медицины и может быть использовано для обследования больных с сердечно-сосудистыми заболеваниями и выявления скрытой коронарной и миокардиальной недостаточности
Изобретение относится к медицине, кардиологии, фтизиопульманологии

Изобретение относится к медицине, медицинской технике

Изобретение относится к медицинской технике, а именно к аппаратуре для контроля сердечной деятельности пациента

Изобретение относится к медицинской технике и может быть использовано в практической медицине и медико-биологических физиологических исследованиях для наблюдения за характером регуляции ритма сердечной деятельности у больных и здоровых людей, в спортивной и космической медицине, у лиц, работающих в особых условиях и др

Изобретение относится к области медицины, а именно к кардиологии и предназначенного для исследования сердечно-сосудистой системы и последующей оценки состояния сердца, основанной на расшифровке электрокардиограммы (ЭКГ)

Изобретение относится к медицине, функциональной диагностике, онкологии
Наверх