Способ регистрации нейтронов

 

Сущность изобретения: способ основан на счете мгновенных гамма-квантов захвата, образующихся при взаимодействии нейтронов с ядрами кадмия-113. Согласно изобретению для создания гамма-квантов захвата и их регистрации используют монокристалл полупроводникового соединения кадмия, например, селенит или теллурид кадмия, к которому приложено напряжение смещения, приводящее к возникновению импульса тока при взаимодействии нейтронов с ядрами кадмия. По количеству возникших импульсов тока судят о величине потока нейтронов. 1 ил.

Изобретение относится к области измерения ядерных излучений, а именно, к регистрации нейтронного излучения и предназначено для применения в нейтронных радиометрах, используемых в системах обеспечения радиационной безопасности, учета и контроля ядерных материалов и технологического контроля при производстве делящихся материалов.

Известные способы регистрации нейтронов подразделяются на методы измерения ядер отдачи при упругих соударениях, методы, связанные с регистрацией заряженных частиц или гамма-квантов, образующихся в результате ядерных реакций, и активационные методы.

Известен способ регистрации нейтронов, основанный на взаимодействии нейтронов с полупроводниковым материалом (Акимов Ю.К. и др. Полупроводниковые детекторы ядерных частиц и их применение. М. Атомиздат, 1967, с.174-179).

Недостаток этого способа заключается в малой эффективности.

Известен способ, основанный на регистрации мгновенных гамма-квантов, образующихся при радиационном захвате нейтрона ядром кадмия-113. Этот способ описан в книге Аллена В.А. Регистрация нейтронов. М. Госатомиздат, 1962, с. 32. В известном способе, являющемся наиболее близким к предложенному, гамма-кванты регистрируются внешним сцинтилляционным детектором.

Эффективность регистрации при данном способе выше, но он сложен в реализации, так как при осуществлении способа требуется дополнительный внешний сцинтилляционный детектор.

Предлагаемый способ регистрации нейтронов решает задачу повышения эффективности простыми средствами.

В предложенном способе, основанном на регистрации мгновенных гамма-квантов, образующихся при радиационном захвате нейтрона ядром кадмия, повышение эффективности достигается тем, что захват нейтронов и регистрация гамма-квантов осуществляется монокристаллом полупроводникового соединения кадмия, например, селенидом или теллуридом кадмия.

Для чего при осуществлении способа регистрации нейтронов, основанного на взаимодействии нейтронов с полупроводниковым материалом, согласно которому облучают в измеряемом нейтронном потоке полупроводниковый материал, в предлагаемом способе облучают монокристалл полупроводникового соединения кадмия, например, селенида или теллурида кадмия, прикладывают к нему напряжение смещения и измеряют количество импульсов тока, по которому судят о величине потока нейтронов.

На чертеже представлена схема монокристалла, выполняющего роль детектора, где обозначены: монокристалл 1 из полуизолирующего материала, контакты 2, нагрузочное сопротивление 3, источник напряжения смещения 4.

При захвате нейтрона ядром кадмия-113 образуется 3 или 4 мгновенных гамма-кванта с общей энергией примерно 9 МэВ, которые, взаимодействуя с атомами полупроводника путем фотоэффекта или эффекта Комптона, создают в объеме полупроводника быстрые электроны. Последние, сталкиваясь с атомами решетки полупроводника, образуют электронно-дырочные пары, которые разделяются электрическим полем и создают в нагрузочном сопротивлении импульс тока, регистрируемый счетным устройством.

Детектор (см. чертеж) представляет собой пластину 1 из полуизолирующего селенида или теллурида кадмия. На две противоположные стороны пластины нанесены металлические контакты 2, полученные методом напыления золота, индия или цинка. К контактам 2 через нагрузочное сопротивление 3 приложено напряжение смещения, создающее в объеме полупроводника электрическое поле.

Полупроводниковые детекторы из теллурида кадмия известны и применяются для спектрометрии гамма-излучения, однако для этих детекторов необходим высококачественный теллурид кадмия с большим временем жизни неравновесных носителей, который стоит очень дорого. Для регистрации нейтронов, вследствие большой суммарной энергии, сигнал существенно превышает сигналы от гамма-квантов в гамма-спектрометрах, что позволяет использовать значительно более дешевый подложечный материал.

Из-за большого сечения захвата нейтронов ядрами кадмия (2550 барн для природного изотопного состава) предлагаемый способ обладает высокой эффективностью, достигающей 20% по тепловым нейтронам при толщине кристалла 1 мм. Применение энергетической дискриминации на уровне 1-1,5 МэВ позволяет надежно защититься от гамма-фона.

Формула изобретения

Способ регистрации нейтронов, основанный на счете мгновенных гамма-квантов захвата, образующихся при взаимодействии нейтронов с ядрами кадмия-113, отличающийся тем, что для создания гамма-квантов захвата и их регистрации используют монокристалл полупроводникового соединения кадмия, для чего монокристалл с приложенным к нему напряжением смещения помещают в поток нейтронов, и по количеству возникших в результате взаимодействия импульсов тока судят о величине потока нейтронов.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к технике измерения нейтронного излучения и может быть использовано для определения флюенса нейтронов

Изобретение относится к области детектирования источников нейтронного и мягкого гамма-излучения, особо источников нейтронов на фоне гамма-излучения, и предназначено для дозиметрической и таможенной практики, для решения задач Госатомнадзора и служб ядерной безопасности, для комплексов и систем специального радиационного технического контроля, для систем радиационного мониторинга территорий и акваторий, для обнаружения и идентификации делящихся материалов (ДМ-урана, плутония, кюрия, калифорния и изделий из них), для обнаружения и идентификации ряда радиоактивных веществ (РВ), обладающих мягким гамма-спектром

Изобретение относится к области радиационных технологий, а также к эксплуатации ядерных установок и ускорителей

Изобретение относится к области радиационных технологий, а также к эксплуатации ядерных установок и ускорителей

Изобретение относится к области радиационных технологий, а также к эксплуатации ядерных установок и ускорителей

РЕФЕРАТ (57) Изобретение относится к области радиационных технологий, а также к эксплуатации ядерных установок и ускорителей. Способ включает калибровку детектора, измерение электрофизических параметров детектора до и после облучения, облучение детектора быстрыми нейтронами, при этом детектор изготавливают в форме пластины с плоскопараллельными поверхностями оснований, до и после облучения измеряют электрическое сопротивление между основаниями пластины, для чего перед измерениями на всю поверхность каждого основания пластины наносят омические контакты, а флюенс быстрых нейтронов F определяют по изменению электрической проводимости между контактами до и после облучения пластины , где К - коэффициент пропорциональности, который постоянен для измеряемого спектра нейтронов и не зависит от исходного электрического сопротивления, коэффициент К определяют при калибровке детектора; d - толщина пластины; S - площадь каждого основания пластины; R0, R - исходное и конечное электрические сопротивления между омическими контактами до и после облучения соответственно. Технический результат заключается в создании простого, более доступного способа детектирования флюенса быстрых нейтронов. 1 табл.

Изобретение относится к области радиационных технологий, а также к исследованиям, созданию и эксплуатации ядерных установок и ускорителей. Технический результат - повышение динамического диапазона измерений флюенса быстрых нейтронов (108-1016 см-2), отсутствие калибровка детектора, возможность измерения эквивалентного флюенса быстрых нейтронов с энергией 1 МэВ при неизвестном спектре. Способ включает измерение вольтамперной характеристики (ВАХ) полупроводникового детектора до и после облучения, в качестве которого используется планарный кремниевый детектор из высокоомного монокристаллического кремния n- или p-типа проводимости с p-n переходом и исходным удельным сопротивлением ρ>1 кОм×см, облучение неизвестным флюенсом быстрых нейтронов, определение флюенса быстрых нейтронов по приращению объемного термогенерационного (темнового) обратного тока детектора за счет образования в нем электрически активных радиационных дефектов от быстрых нейтронов, причем флюенс быстрых нейтронов определяют по формуле: Ф = Δ I α I × V , где: Ф (см-2) - эквивалентный флюенс быстрых нейтронов с энергией 1 МэВ, ΔI=(I1-I0) (A) - измеренное приращение темнового обратного тока детектора после облучения, I0 - ток детектора до облучения при напряжении полного обеднения, приведенный к температуре +20°C, I1 - ток детектора после облучения при напряжении полного обеднения, приведенный к температуре +20°C, αI=(5±0.5)×10-17 (А/см) - токовая константа радиационных повреждений кремния для быстрых нейтронов с энергией 1 МэВ при температуре +20°C без учета самоотжига, V=d×S (см3) - объем детектора при напряжении полного обеднения, d - толщина (см) детектора (измеряется), S - активная площадь (см2) детектора (площадь p-n перехода, известна с высокой точностью из топологии детектора).

Изобретение относится к области ядерного приборостроения. Устройство для измерения плотности потока нейтронов ядерной энергетической установки в условиях фоновой помехи от гамма-квантов и высокоэнергетичных космических электронов и протонов содержит замедлитель нейтронов, блок питания и два параллельно расположенных полупроводниковых детектора с нанесенным на чувствительную область каждого детектора конвертером нейтронов, при этом чувствительные области детекторов с нанесенными на них конверторами обращены по направлению друг к другу, при этом между детекторами расположена пластина из органического материала, а сигналы с детекторов, проходящие через отдельные для каждого детектора каналы регистрации, состоящие из зарядочувствительного предусилителя, устройства селекции сигналов по амплитуде и формирователя временной отметки, подаются на устройство временной селекции, работающее по схеме антисовпадений. Технический результат – измерение плотности потока нейтронов в условиях фоновой помехи от гамма-квантов и высокоэнергетичных космических электронов и протонов. 2 ил.
Наверх