Способ модифицирования силуминов

 

Использование: в металлургии, в частности рафинирование и модифицирование силуминов. Сущность изобретения: модифицирование силуминов путем введения их в солевой расплав на основе эвтектической смеси KCl-NaCl, содержащий NaF в количестве 6-17 мас.% или BaCl2 в количестве 20-40 мас.%, плавку и выдержку под слоем солей при 787-1017oC в течение 1-2 ч, после удаления сплава в солевой расплав добавляют новую порцию твердого силумина, при этом высоту солевого расплава над металлом поддерживают в пределах 2,2-30 см, а соотношение металла к расплаву солей берут 1:(0,5-2,5). Способ обеспечивает повышение степени модифицирования сплава и одновременное рафинирование его от окисных пленок и интерметаллидов. 2 з. п. ф-лы, 4 ил., 1 табл.

Изобретение относится к цветной металлургии, в частности к способам обработки алюминиево-кремниевых сплавов (силуминов) перед разливкой.

Известны способы модифицирования силумина доэвтектического и эвтектического типа с помощью введения модификатора из смеси солей [1] в виде таблеток, содержащих, мас. NaF 52; NaCl 27; KCl 7; C 14. Количество модификатора 0,25% от массы расплава металла.

Известны способы, в которых наряду с солевыми модификаторами добавляют карбиды бора, крупнозернистую стружку в смеси с окислами, легко отдающими кислород, например хлоратами, нитратами, перборатами, персульфатами, хроматами и перманганатами щелочных и щелочноземельных металлов MnO2, Cr2O3 и т.п.

Например, по способу модифицирования силуминов [2] предложены составы смесей, мас. 1) Na2CO3 34; CaF2 15; крупнозернистый A1 порошок 25; NaNO3 10; NaCl 9; KCl 7; 2) NaF 25; Na2CO3 35; крупнозернистый порошок Al-Mg сплава 25; NaNO3 8; NaCl 3,5; KCl 3,5; 3) Na2CO3 31; Na3AlF 41; крупная Mg стружка 13; NaNO3 5; NaCl 5; KCl 5; 4) Na2CO3 48; AlF3 26; гранулированный сплав Ca-Si 10; Mg стружка 3; NaNO3 3; NaCl 5; KCl 5.

Недостатками указанных способов являются необходимость приготовления указанных смесей (размол, смешение, сушка, хранение), при этом многие добавки нельзя долго хранить, особенно содержащие порошки металлов или гигроскопические смеси; необходимость ввода строго дозированного количества смесей и перемешивания их с металлом, т.е. необходимы дополнительные ковши, мешалки, камеры для выдержки; все флюсы и другие модификаторы разового действия, т.е. после каждой операции модифицирования их удаляют с поверхности металла, при этом теряется часть металла, часть их остается в металле, снижая качество отливки по неметаллическим включениям; необходимо строго следить за температурой, так как длительная выдержка может привести к переохлаждению металла вследствие ввода твердого флюса при пониженной температуре сплава близкого к точке плавления.

Известны способы обработки алюминиевых сплавов с использованием модификаторов, содержащих хлориды и фториды щелочных и щелочно-земельных металлов, а также бора, титана, циркония [3-5] По способу [3] состав наряду KCl, NaCl, NaF содержит кремне-фтористый натрий (8-12 мас.) и соду (2-10 мас.). Кремне-фтористый натрий летуч, так при 600oC упругость его паров столь велика, что с ним трудно работать, а сода окисляет алюминий. Поэтому при применении такого флюса возможно сильное выделение паров солей и повышенное количество окисных включений в металле.

По способу [4] содержит AlBF6, который дорог, дефицитен и полностью теряется после каждого разового применения.

По способу [5] наряду с простыми и дешевыми компонентами используется фторцирконат калия в количестве 10-20 мас. и фтористый стронций в количестве 4-20 мас. что практически равно стоимости силумина.

По технической сущности наиболее близким к предлагаемому является способ модифицирования эвтектических силуминов флюсами [6] Способ включает получение алюминиевого расплава, введение в расплав модификатора в количестве 3,6% (по отношению к общему количеству А1-сплава) и выдержку расплава при 900oC в течение 9 мин. В качестве модификатора используют 2-компонентный флюс, содержащий NaF и NaCl в отношении NaF/NaCl равным 2,3.

Указанный способ имеет все отмеченные выше недостатки: необходимость приготовления смеси флюса, его строго дозированное количество с ограниченным составом, введение его в расплав алюминия в твердом виде, время выдержки не более 9 мин и полное удаление флюса после операции. В процессе удаления флюса вместе с ним удаляется часть алюминия, а расплав может быть загрязнен примесями солей. Все это нарушает структуру сплава и снижает его качество.

Задачей изобретения является повышение качества получаемого силуминового сплава за счет улучшения его структуры и повышения механических свойств.

Поставленная цель достигается тем, что в способе модифицирования силуминов с использованием флюса из галоидных солей, согласно изобретению твердый сплав силумина загружают в солевой расплав на основе эвтектической смеси KCl NaCl, содержащий NaF в количестве 6-17 мас. или BaCl2 в количестве 20-40 мас. плавят и выдерживают под слоем солей при 787-1017oC в течение 1-2 ч, а после удаления сплава в солевой расплав добавляют новую порцию твердого силумина, при этом высоту солевого расплава над металлом поддерживают в пределах 2,2-30,0 см, а соотношение металла к расплаву солей берут 1:(0,5-2,5).

Расплав солей остается для переплавки новой порции силумина. Возможно удаление части и загрузка на оставшийся слой (болото) новой порции сплава.

Новым в данном способе является совмещение плавки твердого силуминового сплава в виде чушек, бракованных деталей, лома и стружки и его модифицирования, а также рафинирования, т.е. не твердый флюс добавляют к расплавленному силумину, а наоборот в солевой расплав вводят твердый металл. Плавка металла под слоем галоидных солей приводит к уменьшению в готовом металле окисленных включений, карбидов и других примесей, которые смачиваются солями и уходят из металла. Слой расплавленных солей предохраняет от дальнейшего окисления, создается четкая граница раздела металл соль, что позволяет полностью отделить металл от солей.

Кроме того, более высокая температура расплава в момент обработки и перед выпуском позволяет повысить модифицирующий и рафинирующий эффект за счет интенсификации физико-химических процессов, протекающих в расплаве. Повышение верхнего предела предлагаемой температуры приводит к летучести компонентов системы и нарушению санитарно-гигиенических условий обслуживания технологии.

Присутствие фторида натрия и хлорида бария приводит к более эффективному модифицированию структуры, причем в отсутствие NaF и при содержании его менее 6 мас. эффект модифицирования незначителен, а более 17 мас. расплав разъедает футеровку печи. Менее 20 мас. BaCl2 также мало влияет на эффект модифицирования, а при его содержании более 40 мас. силумин всплывает на поверхность солевого расплава и окисляется.

Значительно большая масса расплава солей от 50 до 250% от массы металла (вместо 3,6% в прототипе) позволяет отказаться от многих дорогих и дефицитных солей, металлов и сплавов, применяемых при модифицировании структуры силумина. Соотношение металла к расплаву солей менее 1:0,5 не обеспечивает достаточного модифицирующего эффекта, а соотношение более 1:2,5 нецелесообразно, так как не повышает качества получаемого металла.

Выдержка расплава в течение 1-2 ч позволяет также улучшить процесс модифицирования, создать непрерывный процесс, упростить его, отказавшись от тонкого измельчения, перемешивания компонентов, съема модифицирующих флюсов, дополнительной очистки полученного расплава.

Выдержка металла под слоем солевого расплава менее 1 ч не обеспечивает достаточной степени рафинирования металлического расплава, и поэтому для получения наивысших результатов рафинирования и модифицирования продолжительность выдержки в течение 1-2 ч является оптимальной.

Высота солевого расплава в пределах 2,2-30,0 см также является оптимальной: при высоте менее 2,2 см происходит только частичное модифицирование структуры, что приводит к неравномерным свойствам полученных отливок, а при высоте более 30 см увеличивается расход солей, электроэнергии и т.д. при тех же показателях качества.

На фиг. 1-4 представлены результаты металлографического изучения шлифов, по которым оценивали эффективность модифицирования структуры готового сплава.

Пример 1. В шахтную селитовую печь установили алундовый тигель 50 мм, длиной 70 мм, нагрели до 787oC, загрузили 40 г известного сплава типа АЛ 9, имеющего следующий химический состав, мас. Si 6-8; Mn 0,2-0,4; Fe 0,3-1,0; Mg 0,2-0,4; алюминий остальное, сумма примесей 1,0-1,9% Металл расплавили и изотермически выдержали в течение часа при 78720oC в атмосфере воздуха, расплав металла вылили в изложницу из графита (фиг. 1). Металлографические исследования выполняли на микроскопе "Neophot-2" с применением компьютерного комплекса для проведения количественного фазового анализа, микротвердость измеряли на приборе ПМГ-3.

Пример 2. В шахтную селитовую печь установили алундовый тигель o 50 мм, длиной 70 мм со смесью солей (56% KCl 44% NaCl) в количестве 70 г, нагрели до 787oC, расплавили соль и загрузили 40 г сплава АЛ 9, имеющего состав из примера 1, металл расплавили и выдерживали в течение 1 ч при указанной температуре (7872oC) в атмосфере воздуха под расплавом солей и вылили в графитовую изложницу, охладили до комнатной температуры и произвели исследование образца металла по методике, принятой в примере 1.

Пример 3. В шахтную печь установили тигель из алунда с размерами предыдущего опыта с 90 г смеси (56% KCl 44% NaCl) и добавили 6 г NaF, расплавили при 787oC, опустили 50 г сплава АЛ9, имеющего состав предыдущих опытов. Расплав выдержали при 7872oC в течение 1 ч, вылили металл с расплавом солей в графитовую изложницу, охладили до комнатной температуры и отделили металл.

Образец металла исследовали, как и предыдущие.

Пример 4. В шахтную селитовую печь установили тигель из алунда с 83 г смеси (56% KCl 44% NaCl) и 17 г NaF, расплавили при 900oC, опустили 50 г сплава АЛ 9, выдерживали 1 ч при 9172oC, вылили содержимое в графитовую изложницу, охладили до комнатной температуры, отделили металлический слиток и исследовали, как в предыдущих опытах.

Пример 5. В этой же печи, что и опыт 1-4 расплавили 40 г сплава АЛ 9 при 787oC в расплаве солей (80 г смеси (56%KCl 44% NaCl) + 20 г BaCl2), расплав выдержали 1 ч при 7872oC и вылили в графитовую изложницу. Полученный слиток металла исследовали, как в примере 1-4.

Пример 6. В однофазной печи сопротивления мощностью 100 кВт, имеющей внутренние размеры 80 х 60 х 80 см, проводящую подину и подвижные верхние электроды (2 электрода диаметром 300 мм), наплавили 260 кг солей толщиной 30 см следующего состава, мас. NaCl 36,6; KCl 46,4; NaF 17, загрузили порциями по 10-15 кг отходов сплавов АЛ 9 в количестве 370 кг, нагрели до 950oC и выдержали в течение 2 ч, из печи через летку в нижней части слили 150 кг сплава (10 чушек) и в дальнейшем через каждые 2 ч выливали по 150 кг сплава, постоянно загружая отходы в печь порциями 10-15 кг. В печи поддерживались следующие параметры: температура 930-960oC, слой металла 20-30 см, слой расплава солей 25-30 см. Мощность 80-95 кВт, время между выпусками 2 ч.

При разливке отбирали пробы и исследовали, как в примере 1-4.

Пример 7. В той же печи, что опыт 6, наплавили 260 кг солей толщиной 30 см следующего состава, мас. NaCl 28,16; KCl 35,84; BaCl 36, загружали порциями по 10-15 кг отходов сплава АЛ 9 в количестве 370 кг, нагрели до 900oC и выдержали в течение 2 ч. Из печи через летку слили 150 кг сплава. В дальнейшем через каждые 2 ч выпускали по 150 кг металла, постоянно загружая сплав в печь порциями 10-15 кг. В печи поддерживали параметры: температура 90010oC, слой металла 20-30 см, слой расплава солей 25-30 см, мощность печи 80-95 кВт.

Для сравнения было проведено модифицирование силумина по способу - прототипу (опыт 7).

Результаты приведены в таблице.

Как видно из таблицы, переплав в расплавах солей NaCl-KCl-NaF или NaCl-KCl-BaCl2 приводит к улучшению структуры сплава за счет модифицирования силуминовой эвтектики и уменьшения доли неметаллических включений, увеличению междендритного расстояния и повышению микротвердости фазы.

По сравнению с известным предлагаемый способ имеет следующие преимущества: повышение механических характеристик и улучшение структуры сплава, при этом происходит его одновременное рафинирование от окисных пленок и интерметаллидов; возможность переработки отходов сплава; удешевление процесса за счет уменьшения трудоемкости и снижения стоимости флюса за счет его оборачиваемости.

Источники информации 1. Способ модифицирования силуминов натрием. Заявка ФРГ N 2928794, кл. C 22 C 21/02, 5.02.81. ВИНИТИ РЖ Мет. 11Г 180 п. 1981.

2. Способ модифицирования силуминов. Заявка ФРГ N 2935017, кл. C 22 C 1/03, 19.03.81. ВИНИТИ РЖ Мет. 2Г 159 П. 1982.

3. Флюс для обработки алюминиевых сплавов. Авторское свидетельство СССР N 616314, кл. C 22 B 9/10, 9.06.78.

4. Модификатор для обработки литейных алюминиево-кремниевых сплавов. Авторское свидетельство СССР N 800223, кл. C 22 C 1/06, 30.01.81.

5. Флюс для обработки алюминиевых сплавов. Авторское свидетельство СССР N 933794, кл. C 22 C 1/06, 07.06.82.

6. Славов Рашко, Натов Натко, Бояджиев Любомир. Многофакторное исследование модифицирования эвтектических силуминов флюсами. Металлургия, 1978, N33 19-20 (Болг.) ВИНИТИ РЖ Мет. 1Г 170, 1979.


Формула изобретения

1. Способ модифицирования силуминов с использованием флюса из галоидных солей, отличающийся тем, что твердый сплав силумина загружают в солевой расплав на основе эвтектической смеси хлорид калия хлорид натрия, содержащий фторид натрия в количестве 6 17 мас. или хлорид бария в количестве 20 40 мас. плавят и выдерживают под слоем солей при 787 1017oС в течение 1 - 2 ч, а после удаления сплава в солевой расплав добавляют новую порцию твердого силумина.

2. Способ по п.1, отличающийся тем, что высоту солевого расплава над металлом поддерживают в пределах 2,2 30,0 см.

3. Способ по п.2, отличающийся тем, что соотношение металла к расплаву солей берут равным 1 (0,5 2,5).

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6



 

Похожие патенты:
Изобретение относится к способу изготовления сетчатого электрода для использования в электрохимическом производстве, имеющему улучшенные стойкость к окислению и коррозионную стойкость по сравнению с известными электродами, используемыми для тех же целей, включающему синтез при горении, с получением тела сердечника, имеющего взаимосвязанную сетку керамического или металлокерамического композита, в которой равномерно диспергирован материал наполнителя

Изобретение относится к металлургии, в частности к способам защиты поверхности расплавленных металлов от окисления, и может быть использовано при переплавке металлов и сплавов, нанесении металлических покрытий из расплавов

Изобретение относится к пирометаллургическому извлечению цветных металлов, в частности к переработке оловосодержащих железо-мышьяковистых сплавов, например гартлингов и шпейз

Изобретение относится к металлургии редких металлов и сплавов и в частности к получению сплавов на основе РЗМ для постоянных магнитов

Изобретение относится к области порошковой металлургии, а именно к способам изготовления антифрикционных спеченных материалов, и может быть использовано при изготовлении самосмазывающихся подшипников и колец узлов торцевого уплотнения

Изобретение относится к порошковой металлургии, а именно к способам получения неорганических тугоплавких соединений методом самораспространяющегося высокотемпературного синтеза (СВС) и к устройствам для его осуществления

Изобретение относится к металлургии, в частности к способам защиты поверхности расплавленных металлов от окисления, и может быть использовано при переплавке металлов и сплавов, нанесении металлических покрытий из расплавов

Изобретение относится к металлургической промышленности и может быть использовано для легирования жидких металлов, например, алюминия и его сплавов, тугоплавкими элементами

Изобретение относится к цветной металлургии, в частности к переработке лома и отходов алюминиевых сплавов с использованием электрических печей сопротивления

Изобретение относится к металлургии цветных металлов и может быть использовано для рафинирования алюминия и его сплавов от натрия и кальция

Изобретение относится к металлургии цветных металлов и сплавов, в частности к получению сплавов алюминия с кремнием

Изобретение относится к цветной металлургии и может быть использовано при производстве фольги, слитков и фасонных отливок из алюминия и его сплавов

Изобретение относится к литейному производству и может быть использовано при литье алюминиевых сплавов, содержащих литий

Изобретение относится к литейному производству, а именно к технологии получения алюминиевых сплавов, содержащих литий

Изобретение относится к рафинированию алюминиевых расплавов от примесей, например, щелочных металлов, водорода и неметаллических включений
Наверх