Устройство для диагностики автоколебаний рабочего колеса турбомашины

 

Изобретение относится к энергомашиностроению и представляет собой устройство для диагностики автоколебаний рабочего колеса турбомашины, содержащее по крайней мере один датчик пульсаций, помещенный в корпусе в зоне периферии лопаток рабочего колеса и подключенный через фильтр и усилитель ко входу схем совпадения, а выход последней через усилитель подключен к системе индикации, причем датчик через согласующий усилитель подключен к входам схемы совпадений одной промежуточной и двумя крайними параллельными цепями, каждая из которых имеет последовательно включенные перестраиваемый активный полосовой фильтр, амплитудный дискриминатор, интегратор и электронный ключ, а к фильтрам крайних и промежуточных цепей дополнительно подключен через усилитель датчик частоты вращения рабочего колеса. 4 ил.

Изобретение относится к энергомашиностроению и может быть использовать при доводке осевых турбомашин и при их диагностике в процессе эксплуатации.

Известны устройства для диагностики автоколебаний рабочего колеса турбомашины, содержащие по крайней мере один датчик (емкостной или индукционный), помещенный в корпусе в зоне периферии лопаток рабочего колеса и подключенный через фильтр и усилители ко входу схемы совпадений, а выход последней через усилитель подключен к индикатору.

Недостатки этого устройства заключаются в том, что оно не позволяет с высокой достоверностью обнаружить диагностическую частоту автоколебаний, а результат диагностики зависит от зазора между датчиком и лопатками, который в свою очередь зависит от многих неуправляемых факторов, вследствие этого является недостаточно надежным.

Предлагаемое изобретение обеспечивает точность и надежность диагностики автоколебаний и измерения диагностической частоты.

Это обеспечивается тем, что датчик пульсаций дополнительно подключен ко входу схемы совпадений тремя (одной промежуточной и двумя крайними) параллельными цепями, каждая из которых включает перестраиваемый активный полосовой фильтр, амплитудный дискриминатор, интегратор и электронный ключ, а к фильтрам крайних цепей дополнительно подключен через усилитель датчик частоты вращения ротора.

На фиг. 1 представлена схема экспериментальной турбомашины с устройством для диагностики автоколебаний рабочего колеса турбомашины; на фиг. 2 схема устройства для диагностики автоколебаний; на фиг. 3 спектр пульсаций потока при отсутствии автоколебаний; на фиг. 4 спектр пульсаций потока при наличии автоколебаний.

Экспериментальная турбомашины, например, компрессор, содержит корпус 1 с неподвижными лопатками 2, ротор 3 с рабочими колесами 4 и рабочими лопатками 5, за компрессором установлен дроссель 6. Компрессор приводится во вращение приводом (на чертеже не показан).

Перед, над или за рабочими лопатками 5 в корпусе установлены один или несколько датчиков 7,8,9. Датчиков по окружности корпуса может быть несколько,но достаточно и одного.

При использовании одного датчика 9 (фиг.2) последний подключен ко входам схемы совпадений 10 через согласующий усилитель 11 тремя параллельными цепями промежуточной 12 и крайними 13 и 14. Каждая цепь имеет последовательно включенные перестраиваемый активный полосовой фильтр 15,16,17, амплитудный дискриминатор 18,19,20, интегратор 21,22,23 и электронный ключ 24,25,26.

Схема совпадений 10 через усилитель 27 подключена к индикатору 28. Кроме того, устройство имеет датчик 29 частоты вращения рабочего колеса, который через усилитель 30 подключен к фильтрам 15,16,17.

Устройство работает следующим образом.

При отсутствии автоколебаний датчик фиксирует только роторные гармоники 31,32,33,34,35 (фиг.3) и частоту 36 следования лопаток, равную nfp. В момент возникновения автоколебаний вблизи рабочего колеса возникает фазомодулированная бегущая акустическая волна, при этом кроме спектральной составляющей 37 (фиг.4), определяемой по формуле (2), наблюдают для каждой формы колебаний колеса, по которой реализуются автоколебания, две другие спектральные составляющие 38 и 39, симметрично расположенные относительно частоты 36 следования лопаток, то есть момент возникновения автоколебаний фиксируют по появлению в спектре пульсаций спектральных составляющих с частотами f1,2= n fp fn (1) где nfp частота 36 следования лопаток, а частота fn определяется по формуле fn fm + mfp, (2) где fm собственная частота колебаний, fp частота вращения ротора, m номер собственной формы колебаний, потенциально неустойчивой к автоколебаниям.

Уровни этих двух спектральных составляющих с точностью до погрешности измерений должны быть равны между собой. Если в спектре будут присутствовать какие-то две другие спектральные составляющие, также симметрично расположенные относительно частоты следования лопаток nfp, но сильно отличающиеся по уровню, то они не являются диагностическими для автоколебаний. Расстояние по частоте, на котором располагается каждая из этих двух спектральных составляющих 38, 39 от частоты 36 следования лопаток равно сумме частоты проявившейся потенциально неустойчивой формы колебаний и частоты вращения ротора, умноженной на номер этой потенциально неустойчивой формы колебаний.

С датчика 9 сигнал переменного тока звуковой частоты выступает на согласующий усилитель 11. С усилителя 11 сигнал поступает на активных перестраиваемых фильтра 15,16,17. Медленно меняющееся напряжение Up, пропорциональное частоте вращения ротора, поступает от датчика 29 на фильтры 15,16,17 и перестраивает их по частоте вслед за частотой ротора. Фильтры 15,16,17 полосовые. Один фильтр (17) настроен на частоту 38, другой фильтр (15) на частоту 39 (см.фиг.4).

С фильтров 15,16,17 сигналы поступают на амплитудные дискриминаторы 18,19,20, которые селектируют по амплитуде сигналы, не превышающие пороги. С дискриминаторов 18-20 сигналы поступают на интеграторы 21-23.

С интеграторов 21-23 сигналы поступают на электронные ключи 24-26, формирующие цифровой сигнал. С ключей 24-26 сигналы поступают на схему совпадений 10, выполненную на логическом элементе.

Схема совпадений 10 вырабатывает сигнал при наличии на входах одновременно двух сигналов с частотами f1 и f2 (фиг.4), превышающих пороги дискриминаторов.

Со схемы совпадений 10 сигнал "флаттер" поступает на усилитель согласования 27, а затем на индикатор 28.

Формула изобретения

Устройство для диагностики автоколебаний рабочего колеса турбомашины, содержащее по крайней мере один датчик пульсаций, помещенный в корпусе в зоне периферии лопаток рабочего колеса и подключенный через фильтр и усилитель к входу схемы совпадений, а выход последней через усилитель подключен к индикатору, отличающееся тем, что датчик через согласующий усилитель подключен к входам схемы совпадений одной промежуточной и двумя крайними параллельными цепями, каждая из которых имеет последовательно включенные перестраиваемый активный полосовой фильтр, амплитудный дискриминатор, интегратор и электронный ключ, а к фильтрам крайних и промежуточных цепей дополнительно подключен через усилитель датчик частоты вращения рабочего колеса.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к способу демпфирования вибраций в компонентах турбомашин и устройству для осуществления этого способа

При демпфировании колебаний в лопатке турбинной машины колебательную энергию лопатки сначала преобразуют в электрическую энергию за счет пьезоэлектрического эффекта, а затем электрическую энергию преобразуют в тепло потерь. Внутри подлежащей демпфированию лопатки создают полое пространство для установки пьезоэлектрического демпфирующего элемента. Устанавливают в полое пространство лопатки пьезоэлектрический демпфирующий элемент, выполненный с возможностью деформации за счет колебаний лопатки и создания электрического напряжения. Жестко соединяют демпфирующий элемент с лопаткой за счет замыкания по материалу или механического зажимания. С помощью созданного электрического напряжения создают в подключенной электрической цепи омическое тепло потерь. Другое изобретение группы относится к лопатке турбинной машины, в которой для осуществления указанного выше способа внутри лопатки образовано полое пространство и, по меньшей мере, один пьезоэлектрический демпфирующий элемент расположен в указанном полом пространстве. Группа изобретений позволяет упростить демпфирование колебаний лопатки турбинной машины. 2 н. и 12 з.п. ф-лы, 8 ил.

Лопаточный кольцевой сектор статора турбомашины летательного аппарата содержит сектор внутренней обечайки, множество лопаток и сборку, образующую сектор наружной обечайки. Лопатки закреплены на сборке, образующей сектор наружной обечайки, и на секторе внутренней обечайки. Сборка, образующая сектор наружной обечайки, содержит множество элементарных секторов на расстоянии друг от друга вдоль тангенциального направления сборки, и демпфирующие вибрацию клинья. Каждый демпфирующий вибрацию клин вставлен между двумя элементарными секторами, размещенными непосредственно последовательно вдоль упомянутого тангенциального направления. Профиль каждого демпфирующего вибрацию клина является приблизительно таким же, как профиль элементарных секторов. Демпфирующие вибрацию клинья проходят вдоль наклонного направления упомянутой сборки. Другое изобретение группы относится к турбомашине, содержащей указанный выше лопаточный кольцевой сектор. Группа изобретений позволяет повысить демпфирование вибраций статора турбомашины. 2 н. и 3 з.п. ф-лы, 8 ил.

При доводке рабочего колеса газотурбинного двигателя проводят экспериментальные испытания и определяют необходимость доводки вследствие обнаружения возбуждающих колебаний, приводящих к разрушению замкового соединения на рабочих лопатках. После определения необходимости доводки газотурбинного двигателя определяют наиболее эффективный вариант подрезки сопловых лопаток, заключающийся в наименьшем падении КПД газотурбинного двигателя. Первый вариант подрезки заключается в косой подрезке выходной кромки сопловой лопатки с увеличением угла подрезки от концевой части пера с максимальной глубиной подрезки у корневой части пера, не превышающей 10% от хорды профиля пера сопловой лопатки. Второй вариант подрезки заключается в косой подрезке выходной кромки сопловой лопатки с увеличением угла подрезки от корневой части пера с максимальной глубиной подрезки у концевой части пера, не превышающей 10% от хорды профиля пера сопловой лопатки. Лопаток с вариантом подрезки с наименьшим падением КПД закладывают в рабочее колесо от 60% до 70%, с наибольшим падением КПД - от 30% до 40%. Выполняют подрезку в соответствии с полученными расчетами и сформированный комплект сопловых лопаток расставляют в сопловом аппарате в зависимости от расположения жаровых труб, делящих сопловой аппарат на сектора, в каждый из которых закладывают разную комбинацию лопаток. Комбинацию лопаток составляют по меньшей мере из четырех лопаток одного варианта подрезки или обоих. Затем проводят опытную эксплуатацию, при положительном результате которой газотурбинный двигатель переходит на стадию производства, при отрицательном результате опытной эксплуатации принимают иные варианты расстановки сопловых лопаток в сопловом аппарате. Изобретение позволяет снизить возбуждающие колебания, воздействующие на рабочие лопатки газотурбинного двигателя, при несущественном изменении его конструкции. 5 ил., 2 табл.

Изобретение относится к энергетике. Система впрыска топлива для турбореактивного двигателя, включающая в себя неподвижную часть и скользящую траверсу, дополнительно содержащую центрирующий конус, предназначенный для центрирования инжектора топлива относительно системы впрыска, причем неподвижная часть и скользящая траверса проходят по оси отсчета, причем неподвижная часть содержит полость, ограниченную в осевом направлении дном и закрывающим желобом, при этом скользящая траверса имеет реборду, содержащуюся в полости. Система впрыска топлива дополнительно включает в себя упругие средства, расположенные в полости так, чтобы оказывать усилие на реборду, способные препятствовать вибрирующим микроперемещениям скользящей траверсы относительно неподвижной части в отсутствии термического расширения. Также представлены камера сгорания, а также двигатель летательного аппарата, содержащие систему впрыска топлива согласно изобретению, а также способ сборки системы впрыска топлива. Изобретение позволяет повысить сопротивление износу инжектора. 4 н. и 6 з.п. ф-лы, 9 ил., 1 табл.

Газовая турбина содержит систему балансировки вращающейся части, включающую балансировочный весовой элемент и крепежный элемент. Балансировочный весовой элемент выполнен с первым и вторым отверстиями, при этом первое и второе отверстия выполнены с возможностью съемной установки крепежного элемента. Крепежный элемент обеспечивает соединение балансировочного весового элемента с вращающейся частью при его установке в первое отверстие. Крепежный элемент размещают во втором отверстии после крепления балансировочного весового элемента без возможности снятия на вращающейся части. При балансировке вращающейся части газовой турбины соединяют с возможностью снятия балансировочный весовой элемент с вращающейся частью в пространственно зафиксированном положении посредством введения крепежного элемента в первое отверстие вращающейся части. Проверяют, сбалансирована ли вращающаяся часть, и если вращающаяся часть сбалансирована, то прикрепляют балансировочный весовой элемент без возможности снятия в пространственно зафиксированном положении к вращающейся части. Вводят крепежный элемент во второе отверстие балансировочного весового элемента, когда балансировочный весовой элемент прикрепляют без возможности снятия в пространственно зафиксированном положении. Группа изобретений позволяет упростить балансировку вращающейся части газовой турбины. 2 н. и 13 з.п. ф-лы, 4 ил.

Изобретение относится к демпферам для гашения вибраций рабочих лопаток и дисков авиационных газотурбинных двигателей, а именно устройствам демпфирования колебаний рабочих колес типа блиск (моноколес). Устройство демпфирования колебаний рабочих колес газотурбинного двигателя включает демпфирующий элемент, выполненный в виде упругой ленты, плотно свитой в спираль в несколько слоев, скрепленной радиальными штифтами и установленной с натягом на цилиндрической или конической поверхности обода блиска. Упругая лента может имеет переменную по длине ширину и/или толщину. Поперечное сечение упругой ленты имеет желобчатую форму. Упругая лента изготовлена из материала с высоким внутренним трением. Материал с высоким внутренним трением представляет собой композиционный материал. Изобретение повышает прочность и надежность рабочих колес блискового типа газотурбинного двигателя. 4 з.п. ф-лы, 5 ил.

Изобретение относится к двигателестроению, к области разработки газотурбинных двигателей, в частности к способам их доводки до окончательного конструктивного облика. Способ доводки соплового аппарата турбины газотурбинного двигателя включает установку в окружном направлении двухлопаточных блоков. Шаг между лопатками в блоке и шаг между лопатками соседних блоков постоянен. Перед установкой блоки разделяют на две группы, первую из которых устанавливают без изменений, а во второй группе перед установкой от одного блока отрезают часть с лопаткой, у оставшихся блоков второй группы при механической обработке удаляют с торцов припуск меньше, чем у блоков первой группы, величину которого устанавливают из условия обеспечения увеличенного равномерного шага между лопатками соседних блоков второй группы по сравнению с первой при их установке. При этом шаг между лопатками в блоке оставляют неизменным, как в первой группе. Предложенный способ доводки соплового аппарата турбины позволяет достичь снижения возбуждающих колебаний, влияние которых приводит к разрушению рабочих лопаток турбины газотурбинного двигателя по замковому соединению, при несущественном изменении конструкции соплового аппарата на этапе доводки газотурбинного двигателя, что повышает надежность работы газотурбинного двигателя в течение заданного ресурса. 2 ил.
Наверх