Термоядерный реактор в.в.левкина

 

Использование: в устройствах для получения энергии способом управляемого лазерного термоядерного синтеза, обогащения и восстановления компонентов ядерного топлива. Сущность изобретения: термоядерный лазерный гибридный реактор с энергетическим котлом выполнен из концентрически расположенных оболочек вращения, соединенных в единую несущую пространственную систему. В двух внутренних оболочках размещены сквозные и тупиковые трубы - энергоприемники, поглощающие основную часть энергии взрывов и обеспечивающие существенное снижение динамических нагрузок, между которыми размещены трубопроводы энергетического котла. Свободное пространство камеры реактора заполнено присоединенной массой из сыпучих термостойких теплоемких материалов с высокой прочностью и большим объемным весом. Между двумя наружными оболочками размещаются кассеты с ураном, часть труб энергетического котла и присоединенная масса. Несущие элементы реактора снабжены системой защиты от повреждения гамма излучениями и альфа частицами. Реактор имеет окна для ввода лазерного излучения, систему ввода мишени, систему вакуумирования и зону воспроизводства компонентов термоядерного топлива. Центр зоны взрыва мишеней располагается выше центра тяжести реактора. 2 ил.

Изобретение относится к области получения энергии способом управляемого термоядерного синтеза микровзрывами.

Известным устройством является проект лазерного термоядерного реактора [1] представляющего собой шаровую камеру с системами лазеров, подачи мишени, воспроизводства компонентов, вакуумирования, защиты от гамма-излучений и альфа-частиц.

Наиболее близким по технической сущности устройством является проект лазерного термоядерного гибридного реактора [2] взрывозащитная камера которого выполнена цилиндрической формы (Басов Н.Г. Ядерная и термоядерная энергетика будущего. М. Энергоатомиздат. 1987, с.143-166; Басов Н.Г. и др. Физика лазерного термоядерного синтеза. М. Знание, 1988, с.162-164, рис. 5.1-а) Недостатками известных устройств являются: ограниченные поверхности камер, которые не позволяют решить проблему отвода энергии; основные несущие элементы находятся в зонах регулярного отражения мощных ударных волн и высоких температур, работают в тяжелом режиме; сейсмические воздействия передаются на основание, что потребует огромных затрат на строительство сооружений энергокомплекса, будут вызывать виброзаболевания обслуживающего персонала.

Цель технического решения устранение указанных недостатков и реальное осуществление проблемы получения экологически чистой энергии термоядерные синтезом.

Эта цель достигается путем: дробление мощных термоядерных микровзрывов развитой системой труб-энергоприемников, в которых основная часть выделяющейся энергии поглощается в процессе движения проходящих ударных волн; устройства энергетического котла с развитыми трубчатыми поверхностями внутри взрывозащитной камеры; передачи значительной части мощных нагрузок взрывов на присоединенную массу, которая одновременно обеспечивает равномерную передачу энергии теплоносителя; существенного снижения нагружения на внешнюю несущую оболочку рассекателя ударных волн; развития объема взрывозащитной камеры до необходимых размеров увеличением длины труб-энергоприемников, работающих в лучшем режиме, так как сечения их меньше в десятки раз, чем размеры камеры, а кольцевые усилия в оболочках вращения пропорциональны радиусам;
снижение сейсмических нагрузок за счет поглощения большей части энергии взрывов в трубах-энергоприемниках, в которых усилия замыкаются внутри и друг на друга через присоединенную массу и передачи значительной части нагрузок на верхнюю и боковые части взрывозащитной камеры.

На фиг. 1 дан продольный разрез термоядерного реактора по А-А; фиг. 2 - поперечный разрез реактора по Б-Б. Термоядерный реактор представляет собой ряд концентрически расположенных несущих оболочек вращения; внутренней 1, средней 2, промежуточной 3 и наружней 4; между оболочками 1 и 2 размещена система сквозных труб-энергоприемников 5, направление которых обеспечивает прохождение в них проходящих ударных волн и в которых поглощается большая часть энергии термоядерных микровзрывов в лучшем режиме нагружения. Дальнейшее дробление и ослабление ударных волн осуществляется путем расширения в свободном пространстве 6 и клиновидными элементами 7 и 7', установленных против и между труб-энергоприемников 5, в пространстве между оболочками 1 и 2 и системой труб-энергоприемников 5 установлены трубчатые элементы 8 энергетического котла, обеспечивающего отвод энергии, а остальное пространство заполнено сыпучей присоединенной массой 9 из термостойких теплоемких материалов с высокой прочностью и большим весом, в состав которой входят стальные, металлокерамические и чугунные отходов в виде опилок, ломаной стружки, гранул и мелких отливок; между оболочками 3 и 4 размещаются кассеты с ураном 10, элементы трубчатого котла 8 и присоединенная масса 9; все оболочки соединятся между собой связями 11, образующими единую несущую пространственную систему; нижняя внутренняя часть камеры выполнена в виде конуса 12, внутри которого размещены кассеты с ураном 10, элементы энергетического котла 8 и присоединенная масса 9; реактор опирается на основание 13 виброопорами 14. Окна для лазерного излучения 15 и окно для ввода мишени 16' направлены в центр взрыва 16, находящийся выше центра тяжести камеры 17 с тем, чтобы снизить сейсмические воздействия на основание; защита от гамма-излучений и альфа-частиц осуществляется устройством пористой стенки 18, системами подачи жидкого компонента свободного и принудительного орошения по трубопроводу 19 и форсункам 20; в нижней части расположено вакуумное окно 21. С правой стороны показан упрощенный вариант реактора.

Устройство позволяет снизить усилия во внешних оболочках камеры в сотни раз по сравнению с прототипом.


Формула изобретения

Термоядерный реактор, включающий несущую цилиндрическую камеру с защитными покрытиями внутренних поверхностей стенок и системой орошения их жидким компонентом от воздействия гамма-излучения и альфа-частиц, системами подачи мишеней, воспроизводства компонентов термоядерного топлива, вакуумирования и лазеры с вводами лазерного излучения, отличающийся тем, что взрывозащитная камера выполнена из концентрически расположенных несущих оболочек вращения, соединенных в единую несущую пространственную систему, внутренняя и средняя оболочки соединены рядами сквозных и тупиковых труб-энергоприемников, направленных в центральную зону взрыва, между спаренными оболочками, средней с внутренней и промежуточной с наружной, образовано свободное пространство, между рядами труб-энергоприемников с внутренней стороны и против них на промежуточной оболочке выполнены клиновидные рассекатели ударных волн, нижняя внутренняя часть камеры выполнена конусообразной формы, в полости которой и между спаренными оболочками размещены трубчатые элементы энергетического котла и присоединенная масса из сыпучих термостойких теплоемких материалов с высокой прочностью и большим объемным весом, в состав которой входят стальные, металлокерамические и чугунные отходы, центр размещения взрыва располагается выше центра тяжести реактора.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к области ядерной энергетики, может быть использовано для разработки экологически чистых источников энергии, сверхмощных лазерных устройств с новым принципом функционирования в экспериментальной ядерной физике, в производстве новых материалов с получением химических элементов в управляемом процессе низкотемпературного ядерного синтеза

Изобретение относится к области ядерной энергетики и может быть использовано при создании термоядерных реакторов, а также в других отраслях техники, в которых требуется осуществлять крепление элементов конструкции в труднодоступных местах

Изобретение относится к основным энергетическим установкам, способным преобразовывать энергию плазмы в электрическую с промежуточным нагревом теплоносителя и отбором ее от него в процессе получения электрической энергии, и может найти применение в качестве термоядерной электростанции
Изобретение относится к термоядерным реакторам с использованием пучка частиц

Экструдер // 2075114
Изобретение относится к области формирования и изготовления таблеточного термоядерного топлива и может быть использовано в пневматических, центробежных и других типах инжекторах для дальнейшего ускорения таблеток

Изобретение относится к системам тепловой защиты из огнеупорного композитного материала, которые охлаждаются потоком жидкости, и более точно касается конструкции тепловой защиты для отражателя камеры удерживания плазмы в установке термоядерного синтеза, охлаждающего элемента, который использован в конструкции тепловой защиты, и способа изготовления такого охлаждающего элемента

Изобретение относится к экспериментальным установкам управляемого термоядерного синтеза с магнитным удержанием плазмы и, в частности, к сферическим токамакам

Изобретение относится к области ядерного реакторостроения и может быть использовано для получения электрической энергии

Изобретение относится к термоядерной энергетике и технике мощных источников нейтронного излучения

Изобретение относится к методам получения тепловой энергии и устройствам, генерирующим тепловую энергию, основанным на использовании в качестве рабочего вещества изотопов водорода

Изобретение относится к управляемому термоядерному синтезу и может быть применено для ввода топлива в плазму термоядерных установок

Изобретение относится к области ядерной энергетики и может использоваться в управляемых источниках ядерной энергии

Изобретение относится к области ядерной физики и технике высоких плотностей энергии и может быть использовано для осуществления реакции термоядерного синтеза, генерации термоядерных нейтронов, -частиц и -квантов
Наверх