Способ мембранного разделения газовых смесей

 

Использование: для разделения газов. Сущность: предложен способ мембранного газоразделения, основанный на использовании в качестве материала мембраны полиимида строения, указанного в формуле изобретения. Поли{(1,3-дигидро-1,3-диоксо-2Н-изоиндол-2,5-диил)окси (1,4-фенилен-1-(метил)этилиден-1,4-фениленокси (1,3-дигидро-1,3-диоксо-2Н-изоиндол-2,5-диил)-1,3-фениленокси-1,4-фенилен [2,2,2-трифторо-1-(трифторометил)этилиден] -1,4-фениленокси-1,3-фенилен}, а также его полимер-аналоги, в которых R=CF3 или O-C6H5. 2 табл.

Изобретение относится к области разделения смесей газов и может быть использовано в химической и нефтехимической промышленности, в медицине и здравоохранении, в сельском хозяйстве.

Известны способы разделения газовых смесей с использованием мембран на основе термостойких полимеров, в частности полиимидов. Так, в патенте [1] описаны разнообразные асимметричные мембраны на основе полиимидов, в том числе содержащих гексафторизопропилиденовую группировку в диангидридном компоненте. Мембраны на основе полиимидов этой структуры обладают повышенной проницаемостью. Однако недостатком, ограничивающим применение этих мембран, является их низкая селективность. Так, для пары O2/N2 селективность (фактор разделения) мембран на основе полиимидов разного строения составляет 3,2 4,0.

Известен способ разделения газовых смесей (в том числе воздуха и других кислородо-азотных смесей) с использованием мембраны на основе смесей полиимидов, один из которых в диаминовом компоненте содержит незамещенные ароматические ядра, а другой замещенные аллильными и аллиларильными группами ароматические ядра [2] Дополнительно для улучшения газоразделительных характеристик мембран поверхность смеси полиимидов обрабатывают электромагнитным (ультрафиолетовым, рентгеновским) облучением или потоком, содержащим свободные радикалы. При этом достигают более высокой селективности газоразделения. Так, наблюдаемые факторы разделения (O2/N2) возрастают с 3,52 до 8,27 при увеличении времени облучения. Недостатком данного типа мембран является то, что улучшение характеристик достигается за счет дополнительной и длительной стадии при получении мембраны.

Наиболее близким по существу и достигаемому результату к предлагаемому способу является способ разделения газовых смесей с помощью мембраны на основе полиимидов, описанных в работе [3] Так, содержащий гексафторизопропилиденовую (F6) группировку в диаминовом компоненте полиимид строения: имеет коэффициент проницаемости P(O2)= 0,95 Баррер при 298 K и фактор разделения P(O2)/P(N2)=5,8. Другой полиимид, описанный в той же работе: с тем же строением диаминового компонента имеет P(O2)=1,28 при 298 K и фактор разделения 6,3.

Недостатком данного способа является низкая (в том числе при сравнении с другими полиимидными мембранами) селективность разделения газовых смесей. Так, (факторы разделения газов на мембранах на основе полиимида Б, представлены ниже: Пара Pi/Pj H2/N2 71 H2/CH4 119 CO2/N2 20 CO2/CH4 34.

Задачей предлагаемого изобретения является повышение селективности газоразделения при достаточно высоком уровне газопроницаемости.

Решение поставленной задачи достигается тем, что в способе разделения газовых смесей, включающем подачу разделяемой смеси с одной стороны селективно-проницаемой мембраны и отбор проникающих через нее компонентов с другой, в качестве материала мембраны используют полиимид следующего строения:

где R может быть H, CF3, O-C6H5, n=30 80.

Методика синтеза полимера детально описана в работе [4] Так, поли{ (1,3-дигидро-1,3-диоксо-2Н-изоиндол-2,5-диил)окси (1,4-фенилен-1- (метил)этилиден-1,4-фениленокси(1,3-дигидро-1,3-диоксо-2н-изоиндол-2,5-диил)-1,3-фениленокси-1,4-фенилен [2,2,2-трифторо-1-(трифторометил)этилиден] -1,4-фениленокси-1,3-фенилен} (далее полиимид I) получают методом одностадийной поликонденсации диамина:

и диангидрида:

Реакцию проводят в среде м-крезола при 180oC в течение 5 ч. В качестве катализатора выступает бензойная кислота. Растворимый в реакционной смеси полимер имеет характеристическую вязкость (м-крезол, 25oC) 0,78 дл/г, что соответствует молекулярной массе около 70 000 Дальтон. ИК-спектры полиимида (полосы в области 1780 1720 см-1 (карбонильные группы имидных циклов), 1370 1380 см-1 (третичный атом азота), 720 см-1 (имидные циклы), 1240 см-1 (диарилэфирная группа), 1100 - 1350 см-1 (C-F группы)) согласуются с приведенной выше структурой и свидетельствуют о полном отсутствии незациклизованных фрагментов и малой концентрации концевых групп. Температура размягчения полиимида I составляет 200oC, температура 5% потери исходной массы (в воздушной атмосфере) равна 507oC.

Пример 1.

Полиимид I, где R= H, имеющий молекул. массу 65000 и осажденный из раствора в м-крезоле, вновь растворяют в хлороформе и готовят гомогенные пленки или мембраны с толщиной в пределах 35 40 мкм отливкой из раствора на поверхности целлофана, натянутого на металлическое кольцо, которое выставляют на горизонтальную поверхность. Измерения проницаемости по отношению к индивидуальным газам и смесям проводились по методике, описанной в работе [5] на масс-спектрометре МИ-1309. Значения коэффициентов проницаемости и факторов разделения представлены в табл. 1 и 2.

Таким образом, для гомогенной мембраны на основе полиимида I характерна увеличенная более чем в 2 раза по сравнению с прототипом селективность при разделении таких пар газов, как водород/метан, водород/азот, двуокись углерода/азот и двуокись углерода/метан.

Комбинация повышенной селективности (O2/N2) и относительно высокой проницаемости P(O2) наблюдается при разделении компонентов воздуха с использованием мембраны на основе полиимида I. Объективным критерием уровня газоразделительных свойств материала или мембраны для разделения воздуха может служить положение отображающей точки на диаграмме P(O2) a (O2/N2). В результате обработки большого количества экспериментальных данных было показано [6] что область реализованных в разных мембранах значений P(O2) и a (O2/N2) ограничена сверху линейной, в логарифмическом масштабе, зависимостью P(O2) = k(O2/N2)n где k=389224, а n=-5,800. Для найденной в случае полиимида I селективности 12 коэффициент проницаемости, находимый по указанному уравнению, составляет 0,22 Баррер, тогда как экспериментальное значение равно 0,84 Баррер. Далее, для величины P(O2) значение селективности в соответствии с приведенным выше уравнением составляет около 9, тогда как экспериментальное значение равно 12.

Пример 2.

Поток воздуха при давлении 1 атм пропускают над мембраной, приготовленной по примеру 1. Давление после мембраны в ходе измерений возрастает от 0,001 до 1 мм рт.ст. Состав пермеата в стационарном режиме (здесь и далее мол. ): O2 75,6% N2 24,4% При использовании в качестве материала мембраны полиимида А в соответствии с данными прототипа в аналогичных условиях получают пермеат следующего состава: O2 60,6% N2 39,4%
Пример 3.

Поток кислородно-азотной смеси состава O2/N2=50/50 при давлении 1 атм пропускают над мембраной, приготовленной по примеру 1. Давление после мембраны в ходе измерений возрастает от 0,001 до 1 мм рт. ст. Состав пермеата в стационарном режиме: O2 92% N2 8% При использовании в качестве материала мембраны полиимида Б в соответствии с данными прототипа получают пермеат состава: O2 86% N2 14%
Пример 4.

Кислородно-азотную смесь, полученную в качестве пермеата в примере 2, компримируют до давления 1 атм и вновь пропускают над мембраной, приготовленной по примеру 1. Давление после мембраны в ходе измерений возрастает от 0,001 до 1 мм рт.ст. Состав пермеата второй ступени в стационарном режиме: O2 97,4% N2 2,6% При осуществлении аналогичного двухступенчатого разделения воздуха при использовании мембраны на основе полиимида А в соответствии с данными прототипа получают пермеат состава: O2 90% N2 10%
Пример 5.

Гомогенная мембрана на основе полиимида I с толщиной 20 микрон характеризуется проницаемостью по кислороду 0,12 л/м2 час атм и по азоту 0,01 л/м2 час атм. Мембрану помещают в модуль с поперечным потоком с рабочей поверхностью 0,1 м2. Давление над мембраной составляет 1 атм, под мембраной 0,1 атм. При скорости сырьевого потока воздуха 0,01 л/ч получают не прошедший через мембрану поток (ретентат), содержащий 88,5% азота. При повышении давления над мембраной до 5 атм и снижении поверхности мембраны до 0,01 м2 ретентат с содержанием 99,4% азота получают при скорости сырьевого потока 0,002 л/ч.

Пример 6.

Водородо-азотную смесь состава: H2/N2=30/70 при давлении 1 атм пропускают над мембраной, приготовленной по примеру 1. Давление после мембраны в ходе измерений возрастает от 0,001 до 1 мм рт.ст. Состав пермеата в стационарном режиме: H2 98,3% N2 1,7% При использовании в качестве материала мембраны полиимида Б в соответствии с данными прототипа в аналогичных условиях получают пермеат следующего состава: H2 96,8% N2 3,2%
Пример 7.

Биогаз состава CO2 50% CH4 50% с давлением 1 атм пропускают над мембраной, приготовленной по примеру 1. Давление после мембраны в ходе измерений возрастает от 0,001 до 1 мм рт.ст. Состав пермеата в стационарном режиме: CO2 98,9% CH4 1,1% При использовании в качестве материала мембраны полиимида Б в соответствии с данными прототипа в аналогичных условиях получают пермеат следующего состава: CO2 97,1% CH2 2,9%
Пример 8.

Полиимид формулы I, где R=CF3, имеющий молекулярную массу 75000, переосаждают из раствора в м-крезоле и вновь растворяют в хлороформе. Гомогенные пленки или мембраны получают, как это описано в примере 1. Измерения проницаемости дают следующие результаты: P(O2)=1,1 Баррер, P(N2)=0,1 Баррер, a (O2/N2)= 11. При пропускании воздуха через указанную мембрану за один проход может быть получен пермеат состава: O2=74,5% N2=25,5%
Пример 9.

Полиимид формулы I, где R=OC6H5, имеющий молекулярную массу 50000, переосаждают из раствора в м-крезоле и вновь растворяют в хлороформе. Гомогенные пленки или мембраны получают, как это описано в примере 1. Измерения проницаемости дают следующие результаты: P(O2)=0,23 Баррер, P(N2)=0,019 Баррер, a (O2/N2)= 12. При пропускании воздуха через указанную мембрану за один проход может быть получен пермеат состава: O2=76,3% N223,7%
Источники информации, принятые во внимание
1. R. A. Hayes, US Patent N 4705540, Polyimide gas separation membranes (1987).

2. W.F.Burgoyne, M.Langsam, R.H.Bott, US Patent N 5061298, Gas separating membranes formed from blends of polyimide polymers (1991).

3. K.Tanaka, H.Kita, M.Okano. Polymer, 33, 585 (1992).

4. Г.С. Матвелашвили, В.М. Власов, А.Л. Русанов, Г.В. Казакова, Н.А. Анисимова, О.Ю. Рогожникова. Высокомол. Соед. Б. 35, 293 (1993).

5. Ю. П. Ямпольский, Э.Г. Новицкий, С.Г. Дургарьян. Зав. лабор. 46, 256 (1980).

6.L.M.Robeson, J.Membr.Sci. 62, 165 (1991)в


Формула изобретения

Способ мембранного разделения газовых смесей, включающий подачу разделяемой смеси с одной стороны полиимидной мембраны и отбор проникших компонентов с другой ее стороны, отличающийся тем, что в качестве материала мембраны используют полиимид структуры

где R водород, CF3, O-C6H5;
n 30 80.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к физической химии высокомолекулярных соединений, конкретно к способу получения композиционных двухслойных полимерных мембран для дегидратации водно-спиртовых смесей методом первапорации

Изобретение относится к получению композиционных двухслойных полимерных мембран для дегидратации водно-органических смесей методом первапорации и может быть использовано в пищевой, химической промышленности, биотехнологии и медицине

Изобретение относится к устройству для рекомбинации водорода и кислорода с помощью катализаторных тел, поверхность которых снабжена каталитическим покрытием и через которые направляется содержащая подлежащий удалению водород газопаровая смесь, с окружающим и удерживающим катализаторные тела корпусом

Изобретение относится к устройству для разделения газовых смесей методом диффузии газов через полупроницаемые мембраны и может найти применение в химическом производстве, медицине и других областях техники, где необходимо производить разделение газовых смесей

Изобретение относится к способу извлечения органических паров из смесей органических паров с воздухом, в которых органические пары присутствуют в так называемых мертвых зонах концентраций, которые слишком велики для обычного способа адсорбции углем и слишком малы для эффективного извлечения методом сжатия конденсации

Изобретение относится к авиации, а именно к технике разделения и обогащения газовых смесей, и предназначено для использования в системах жизнеобеспечения летательных аппаратов
Изобретение относится к сельскому хозяйству, в частности к производству овощей в защищенном грунте, теплицах с гидропонными установками

Изобретение относится к каскадному способу производства газообразного азота с промывкой и к каскадному генератору для его осуществления

Изобретение относится к способу дегидратации газа, содержащего влагу

Изобретение относится к мембранной технологии разделения газовых смесей и может быть использовано в химической, нефтехимической, газовой и других отраслях промышленности в тех случаях, когда необходимо разделение газовых смесей на фракции или очистить смеси от примесей, а также в газоаналитической технике
Изобретение относится к области разделения многокомпонентных газовых смесей и может быть использовано в газоперерабатывающей, нефтехимической, химической и других отраслях промышленности

Изобретение относится к способу и устройству для снижения содержания вредных веществ, в частности окислов азота, в газообразных продуктах сгорания

Изобретение относится к объединению способов сжигания, усиленного кислородом, и отделения кислорода с использованием твердых электролитных ионных проводящих мембран

Изобретение относится к способу удаления газообразных окисляемых компонентов из газовой фазы и используется предпочтительно для удаления этилена в процессе хранения фруктов, удаления ртути (паров) из природного газа и удаления Н2S при концентрациях 0,001-10 мг/м3
Наверх