Способ газохроматографического анализа смесей

 

Использование: для хроматографического анализа смесей. Сущность изобретения: способ включает предварительный отбор пробы на углеродном волокнистом сорбенте с последующей десорбцией в смеси воздуха и дистиллированной воды. Дистиллированную воду для десорбции берут в количестве 0,07-0,15% от объема газовой пробы, подаваемой в хроматограф. Процесс десорбции ведут при нормальном давлении в негерметичной системе. 1 з.п.ф-лы, 1 ил.

Изобретение относится к области аналитической химии, а именно, к способам газохроматографического анализа многокомпонентных смесей органических соединений в воздухе, в частности, к способам подготовки пробы исследуемой среды к анализу. Преимущественное применение предлагаемое изобретение может найти для анализа промышленных и природных газов.

Известны способы газохроматографического анализа смесей, заключающиеся в отборе пробы исследуемого вещества путем его концентрирования на сорбенте, последующей термодесорбции в потоке газа-носителя и построения хроматограммы по одной из известных методик.

Недостатками известных способов являются: недостаточно высокая чувствительность анализа; недостаточно высокая технологичность; недостаточно полное использование возможностей твердых сорбентов и десорбции водяным паром в анализе; сравнительно низкая эффективность процесса.

Ближайшим техническим решением, выбранным в качестве прототипа, является способ газохроматографического анализа смесей, заключающийся в предварительной подготовке пробы исследуемой среды путем пропускания ее через поглощающий гранулированный сорбент, причем после полного поглощения примесей сорбентом, из межзерновых пустот сорбента удаляют свободный газ, для чего в сосуд с сорбентом заливают дистиллированную воду в количестве 20-70% от объема газовой пробы в зависимости от типа сорбента. Далее осуществляют нагрев сорбента в потоке газа-носителя (азот, гелий, аргон), который подают в сосуд с сорбентом под избыточным давлением. После десорбции исследуемого вещества осуществляют его сбор в предварительно вакуумированном герметичном приемнике, где образуются две фазы жидкая и паровая, процессы массобмена между которыми доводят до состояния равновесия за счет процесса обратимого испарения. В таком состоянии часть исследуемой среды вводят в хроматограф для последующего анализа.

Недостатки прототипа заключаются в следующем: сравнительно низкой чувствительности анализа, что обусловлено неполнотой десорбции многих органических веществ с известных гранулированных сорбентов, а также отсутствием возможности ввода в газовый хроматограф всего объема двухфазной среды, образовавшейся после десорбции; низкой технологичности, обусловленной необходимостью удаления свободных газов из межзерновых пустот сорбента при подготовке пробы к анализу, необходимостью создания избыточного давления в потоке газа-носителя и большим числом вспомогательных операций при пробоподготовке, а также сравнительно узким кругом анализируемых органических соединений при использовании одного типа сорбента; низкой эффективности, что обусловлено наличием двух фаз в приемнике и необходимостью доведения их до состояния равновесия, а также и тем, что в хроматограф подается на анализ только часть исследуемого объема, так как жидкая фаза практически не может быть введена в аналитическую часть хроматографа в больших количествах.

Задачей настоящего изобретения является создание универсального способа газохроматографического анализа смесей, технический эффект которого выражается в высокой технологичности, эффективности и чувствительности.

Поставленная задача решается за счет того, что в известном способе газохроматографического анализа, заключающемся в предварительном отборе пробы исследуемой среды путем ее концентрирования на поглощающем сорбенте, нагреве сорбента в парах дистиллированной воды, сборе образовавшейся после десорбции среды в приемнике переменного объема и последующем вводе ее в хроматограф, согласно изобретению, в качестве сорбента используют углеродный волокнистый сорбент, нагрев сорбента при десорбции проводят в потоке атмосферного воздуха, а дистиллированную воду для десорбции берут в количестве 0,07-0,15% от объема газовой пробы, подаваемой в хроматограф, при этом процесс десорбции ведут при нормальном давлении в негерметичной системе.

При этом, в качестве углеродного волокнистого сорбента используют углеродный волокнистый сорбент УВС-1.

Исследование патентной и научно-технической литературы показало, что использование указанных сорбентов по вышеописанной технологии неизвестно.

Углеродные волокнистые сорбенты обладают значительно более высокой способностью к поглощению исследуемых смесей при отборе пробы и более высокой способностью к их отдаче, чем гранулированные сорбенты, повышая чувствительность анализа. Кроме того, их использование при подготовке пробы к анализу устраняет такую операцию, как удаление свободных газов из межзерновых пустот сорбента.

Принципиальным в предлагаемом решении служит то обстоятельство, что, в отличии от прототипа, где при использовании дистиллированной воды образуются две фазы исследуемой среды, в заявляемом способе образуется только одна газовая фаза. В результате исчезает необходимость в достижении состояния равновесия между двумя фазами, что способствует повышению эффективности заявляемого технологического процесса.

Кроме того, в заявляемом способе нет необходимости в создании избыточного давления газа-носителя, а проведение десорбции в негерметичной системе в потоке атмосферного воздуха при нормальном давлении снижает количество технологических операций и, тем самым, повышает технологичность способа.

Вместе с тем, благодаря образованию в приемнике только одной паровой фазы исследуемой среды, в хроматограф подается на анализ весь объем исследуемой смеси. По этой же причине не требуется осуществление контроля неравномерности распределения исследуемых веществ между двумя фазами в среде, полученной после десорбции и, как следствие, не возникает необходимости анализа жидкой фазы.

Использование дистиллированной воды функционально отлично от использования ее в прототипе, так как в предлагаемом способе не имеет значения операция предварительного вытеснения свободного газа из поглотительного устройства, в связи с чем дистиллированная вода используется только как десорбирующий агент.

Сущность изобретения поясняется чертежом, на котором представлена принципиальная схема устройства для реализации предлагаемого способа, где 1 поглотительная трубка, 2 сорбент, 3 заглушки, 4 медицинский шприц, 5 - нагреватель, 6 испарители, составляющие аналитическую часть хроматографа.

Заявляемый способ включает в себя следующие операции: предварительный отбор пробы исследуемой среды путем ее концентрации на сорбенте, в качестве которого используют углеродный волокнистый сорбент, нагрев сорбента в потоке смеси паров дистиллированной воды и атмосферного воздуха при нормальном давлении в негерметичной системе, причем дистиллированную воду берут в количестве 0,07-0,15% от объема газовой пробы, подаваемой в хроматограф, сбор однофазной среды в приемнике переменного объема и последующий ввод всего объема десорбированной среды в хроматограф для дальнейшего анализа.

Ниже приводится конкретный пример осуществления предлагаемого способа.

Для проведения анализа предварительно проводят отбор исследуемой среды, осуществляемый с помощью поглотительной трубки 1. В указанной трубке заключен сорбент 2, зафиксированный в ней посредством заглушек из стекловолокна 3, при этом слой сорбента 2 располагают асимметрично по длине поглотительной трубки 1 для того, чтобы отметить тот конец трубки, через который проводят отбор пробы исследуемой среды. В качестве корпуса поглотительной трубки 1 используют стеклянную поглотительную трубку от промышленного газоанализатора УГ-2.

Для отбора пробы через короткий конец поглотительной трубки 1 прокачивают 0,5-2 л исследуемой среды со скоростью 0,1-0,3 л/мин. При подготовке пробы к анализу проводят термодесорбцию исследуемых веществ. Перед термодесорбцией в трубку 1 через ее длинный конец микрошприцем (на черт. не показан) вводят 0,005 мл дистиллированной воды, а к короткому концу присоединяют медицинский шприц 4. Для проведения анализа используют типовой газохроматограф модели 3700 или "Цвет", имеющий несколько идентичных испарителей, один из которых 5 отключен от коммуникационной системы и служить сугубо нагревателем, а остальные 6 составляют аналитическую часть хроматографа. Нагреватель 5 сверху сообщается с атмосферным воздухом, снизу же наглухо закрыт крышкой. При установке трубки 1 в нагревателе 5 ее нижний конец, заполненный дистиллированной водой, также сообщается с атмосферным воздухом. При нагреве трубки 1 образующиеся пары дистиллированной воды вместе с засасываемой исследуемой средой в условиях принудительного увеличения объема приемника 4 увлекают исследуемые примеси, которые, десорбируясь, попадают в приемник 4, причем через трубку 1 прокачивают 5 мл пара за 1 мин. Затем на шприц 4 надевают иглу для инъекций (на чертеже не показана) и подают исследуемую пробу в испаритель 6. Хроматографический анализ проводят по одной из известных методик.

Описанный способ применялся для анализа атмосферного воздуха, в частности, на следующие органические соединения: углеводороды C1-C10, в т.ч. толуол, ксилолы, стирол, метилстирол, бензол, изопропилбензол, этилбензол;
спирты C1-C4, в т.ч. изомеры бутанола;
кетоны, в т.ч. ацетон, метилэтилкетон, циклогексанон;
сложные эфиры, в т.ч. этилацетат, изомеры бутилацетата.

Смеси анализируемых соединений соответствовали бензинам, дизельному топливу, сольвенту и различным лакокрасочным материалам.

Таким образом, предлагаемый способ хроматографического анализа характеризуется большей чувствительностью, эффективностью процесса и более высокой технологичностью в сравнении с прототипом.


Формула изобретения

1. Способ газохроматографического анализа смесей, заключающийся в предварительном отборе пробы исследуемой среды путем ее концентрации на сорбенте, нагрева сорбента в парах дистиллированной воды, сбора образовавшейся после десорбции среды в приемнике переменного объема и последующем вводе ее в хроматограф, отличающийся тем, что в качестве сорбента используют углеродный волокнистый сорбент, нагрев сорбента при десорбции проводят в потоке атмосферного воздуха, а дистиллированную воду для десорбции берут в количестве 0,07 0,15% от объема газовой пробы, подаваемой в хроматограф, при этом процесс десорбции ведут при нормальном давлении в негерметичной системе.

2. Способ по п. 1, отличающийся тем, что в качестве углеродного волокнистого сорбента используют углеродный волокнистый сорбент УВС-1.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к охране окружающей среды, в частности, к охране рыбохозяйственных водоемов
Изобретение относится к аналитической химии, экологии и может быть использовано для диагностики загрязнения сульфидных вод метаболитом ДДТ, 4,4'-дихлордифенилдихлорэтиленом (4,4'-ДДЭ)

Изобретение относится к области газового анализа и может быть использовано, в частности, при экологическом и санитарном контроле воздушной среды

Изобретение относится к газовой хроматографии и может быть использовано для количественного определения (аттестации) отдельных компонентов многокомпонентных смесей произвольного состава

Изобретение относится к способам определения числа активных центров в твердых органических соединениях, в частности в акцепторах ангидридах ароматических кислот, хинонах (хлораниле), нитробензойных кислотах и др

Изобретение относится к области аналитической химии, а именно к способу количественного определения микроколичеств ацетонитрила в воде

Изобретение относится к методам аналитической химии и может быть использовано в лабораториях, осуществляющих контроль окружающей среды

Изобретение относится к методам анализа газов, содержащих токсичные примеси, с применением сорбентов для поглощения токсичных примесей, и может быть использовано для определения серу- или фторсодержащих фосфорорганических токсичных примесей в газах на предприятиях химической, нефтехимической, газовой и других отраслей промышленности, а также при проведении научных исследований

Изобретение относится к области научного или аналитического приборостроения. Оно также может быть использовано при разработке и создании ряда приборов бытового или специального назначения. Этот способ увеличения концентрации примесей, выделяемых из газовой смеси, может иметь широкий спектр применения, а именно в тех случаях, когда требуется импульсное и динамичное во времени повышение концентрации выбранного вещества, достаточное для проведения измерений. Этот способ может быть применен для анализа воздуха, выдыхаемого больными, при диагностике скрытых заболеваний на начальной стадии. Кроме того, этот способ, объединенный с масс-спектрометром или с каким-либо другим аналитическим прибором, сенсором или детектором, может быть использован для создания селективных и чрезвычайно чувствительных анализаторов с целью определения ядовитых или взрывчатых веществ в воздухе, для детектирования наркотиков, определения присутствия в атмосфере паров ртути, следов метана, малых концентраций диоксина и пр. Способ содержит накопительную емкость с расположенными внутри конструктивными элементами. Через накопительную емкость прокачивается газ с примесью, которая адсорбируется на поверхности накопительной емкости и на поверхностях конструктивных элементов внутри нее. С целью повышения пиковой концентрации десорбированных примесей и снижения их потерь десорбция накопленных примесей производится в результате облучения внутренней поверхности накопительной емкости и поверхностей конструктивных элементов, расположенных внутри накопительной емкости и контактирующих с газовой смесью. Техническим результатом изобретения является резкое увеличение концентрации адсорбированного вещества посредством увеличения количества накопленного вещества на максимально большой поверхности с последующим десорбированием его в объем минимальных размеров. 2 ил.

Изобретение относится к устройству для подготовки образцов и анализа пестицидов в образцах посредством хроматографии. Устройство (10) для подготовки образцов и анализа пестицидов в образцах включает колонку (14) для гидрофильной хроматографии с первым насосом (12) для растворителя с преимущественно низким содержанием воды и/или неполярного растворителя. Также устройство включает обогатительное устройство (22) с твердофазной экстракцией, вторую хроматографическую колонку (28) со вторым насосом (18) для растворителя с преимущественно высоким содержанием воды и/или полярного растворителя, детектор (32). Кроме того, устройство также включает вентильный блок (20, 24) для управления потоками образца и матрицы, выполненный таким образом, что поток образца в первом положении коммутации вентильного блока является подаваемым от колонки (14) для гидрофильной хроматографии к обогатительному устройству (22) с твердофазной экстракцией, а во втором положении коммутации обогащенный в обогатительном устройстве (22) с твердофазной экстракцией образец является подаваемым в обратном направлении от обогатительного устройства (22) с твердофазной экстракцией через вторую хроматографическую колонку (28) к детектору (32). Техническим результатом является повышение достоверности результатов, снижение трудовых затрат и расходов материала. 2 н. и 10 з.п. ф-лы, 2 ил.
Наверх