Способ получения бензиновых фракций и ароматических углеводородов

 

Изобретение относится к органической химии, а именно к способу получения высокооктановых бензиновых фракций и/или ароматических углеводородов путем переработки низкооктановых углеводородных фракций, выкипающих в интервале температур 35 - 200oC. Увеличение выхода высокооктановых бензиновых фракций и снижение энергозатрат достигается каталитической переработкой низкооктановых углеводородных фракций в смеси с олефинами, и/или спиртами, и/или простыми эфирами, составляющими 5-20 мас.% от количества подаваемых на катализатор низкооктановых углеводородных фракций способом цеоформинг, а именно на цеолитных (элементосиликатных) катализаторах при температуре 340 - 480oС, давлении 0,1 - 2,0 МПа и объемной скорости подачи сырья 0,5 - 4,0 ч-1. 1 з.п. ф-лы, 1 табл.

Изобретение относится к способам получения высокооктановых бензиновых фракций и (или) ароматических углеводородов путем переработки низкооктановых углеводородных фракций, выкипающих в интервале температур 35 - 200oС (прямогонных бензинов, газовых конденсатов, компрессатов, широких фракций легких углеводородов и т.д.).

Наиболее простым способом переработки указанных углеводородных фракций является отгонка из них бензиновых фракций, выкипающих в пределах температур, определяемых ГОСТами на бензины и последующее компаундирование с высокооктановыми добавками (например, с рафинатом платформинга, тетраэтилсвинцом или метил,-трет.-бутиловым эфиром).

Известны различные способы переработки таких углеводородных фракций (прямогонных бензинов, газовых конденсатов, компрессатов и широких фракций легких углеводородов - ШФЛУ) методом каталитической переработки в высокооктановые бензины [1-3].

Наиболее близким к предлагаемому изобретению по технической сущности является способ получения высокооктановых бензиновых фракций на цеолитных катализаторах, не содержащих благородных металлов, при повышенных температуре и давлении - процесс цеоформинг [4].

Согласно данному способу получение высокооктановых бензиновых фракций ведут путем контактирования низкооктанового углеводородного сырья с высококремнеземными цеолитными катализаторами, имеющими структуру типа пентасил, или кристаллическими элементо-силикатными катализаторами со структурой типа пентасил при повышенных температуре и давлении. В качестве катализатора используют элементосиликат состава (0,02 - 0,32) Na2OAl2O3(0,003 - 2,4) MenOm (28 - 212) SiO2, где MenOm - один или два оксида элементов II, III, V, VI, VIII групп периодической системы, или элементосиликат указанного состава, нанесенный на носитель в количестве 30 - 70 маc.%, или катализатор указанного состава, модифицированный 0,05 - 0,5 маc.% палладия. Процесс проводят в реакторе с катализатором при температуре 340 - 480 oС, давлении 0,1 - 2,0 МПа и объемной скорости подачи сырья 0,5 -4,0 ч-1.

Сырье процесса цеоформинг практически не содержит олефиновых углеводородов, поэтому процесс цеоформинг протекает с поглощением тепла. Перепад температуры по слою катализатора в результате эндотермичности процесса составляет 60- 120oC (что требует перегрева сырья на входе в слой катализатора, а также промежуточного подогрева реакционной смеси.

Авторы для сравнения провели превращение в бензиновые фракции нескольких типов реального сырья, взятого из разных месторождений и нефтеперерабатывающих заводов (НПЗ) по методу, описанному в прототипе.

Пример 1 (прототип). Фракцию газового конденсата следующего группового состава ( мас.%): н-парафины 24,7; изо-парафины 28,3; нафтены 33,2; ароматические углеводороды 13,8, контактируют в реакторе с катализатором при температуре 400oС, давлении 1,0 МПа и объемной скорости подачи жидкого сырья 2,1 ч-1. При этом образуется 36,0 мас.% углеводородных газов и 64,0 мас.% бензиновой фракции, в которой содержится 36,5 мас.% ароматических углеводородов. Катализатор между регенерациями перерабатывает 165 т сырья/т катализатора.

При этом наблюдается падение температуры по слою катализатора за счет эндотермичности процесса на 80oC, что делает необходимым промежуточный подвод тепла и перегрев сырья на входе в реактор до 440oС.

Пример 2 (прототип). Фракцию газового конденсата следующего группового состава (мас.%): н-парафины 26,8; изо-парафины 45,2; нафтены 18,0; ароматические углеводороды 10,0, контактируют в реакторе с катализатором при температуре 400oС, давлении 1,0 МПа и объемной скорости подачи жидкого сырья 2,2 ч-1. При этом образуется 34,0 мас.% углеводородных газов и 66,0 мас.% бензиновой фракции, в которой содержится 42,4 мас.% ароматических углеводородов. Катализатор между регенерациями перерабатывает 95 т сырья/т катализатора. Падение температуры по слою катализатора составляет 100oC, что требует перегрева сырья на входе в реактор до 450oС.

Пример 3 (прототип). Фракцию газового конденсата следующего группового состава (мас. %): н-парафины 33,2; изо-парафины 10,1; нафтены 36,2; ароматические углеводороды 20,5, контактируют в реакторе с катализатором при температуре 380oС, давлении 1,0 МПа и объемной скорости подачи жидкого сырья 2 ч-1. При этом образуется 28,3 мас.% углеводородных газов и 71,7 мас.% бензиновой фракции, в которой содержится 50,2 мас.% ароматических углеводородов. Катализатор между регенерациями перерабатывает 270 т сырья/т катализатора. Падение температуры по слою катализатора составляет 60oС, что требует перегрева сырья на входе в реактор до 410oС.

Пример 4 (прототип). Гексан - гептановую фракцию НПЗ, не содержащую в своем составе ароматических углеводородов (ГГФ), контактируют в реакторе с катализатором при температуре 460oС, давлении 2,0 МПа и объемной скорости подачи жидкого сырья 2 ч-1. При этом образуется 50,6 мас.% углеводородных газов и 49,4 мас. % бензиновой фракции, в которой содержится 46,4 мас.% ароматических углеводородов. Катализатор между регенерациями перерабатывает 100 т сырья/т катализатора. Падение температуры по слою катализатора составляет 100oС, что требует перегрева сырья на входе в реактор до 480oС и промежуточного подвода тепла.

Во всех указанных примерах (прототипах) был использован катализатор на основе цеолита со структурой ZSM-5 со связующим -Al2O3. Силикатный модуль цеолитного компонента был равен 86 (SiO2/ Al2O3 моль).

Данный способ имеет следующие недостатки.

1. Процесс цеоформинг эндотермический и требует больших затрат тепла. За счет преобладания совокупности реакций с эндотермическим тепловым эффектом (разрыв C-C связей) по сравнению с совокупностью реакций с экзотермическим тепловым эффектом суммарный тепловой эффект приводит к падению температуры по слою катализатора на 60-120oС. Для его компенсации требуется перегрев сырья на входе в реактор и промежуточный подогрев продуктов реакции (т.е. необходимы встроенные или выносные теплообменники).

2. При переработке указанного выше сырья в высокооктановые бензины в зависимости от режима переработки и октанового числа бензина, которое необходимо получить, 20-50% сырья превращается в газообразные углеводороды.

3. За счет перегрева сырья на входе в реактор, в лобовом слое катализатора усиливаются процессы коксообразования, что приводит к ужесточению процесса регенерации.

Перечисленные недостатки сильно увеличивают стоимость реакторного блока установки цеоформинга приводят к тому, что катализатор приходится эксплуатировать в неоптимальном для него режиме и уменьшают выход целевого продукта. Этих недостатков лишен предлагаемый способ.

Изобретение решает задачу увеличения выхода целевого продукта - высокооктановых бензиновых фракций - и одновременного снижения энергозатрат на проведение процесса за счет компенсации эндоэффекта процесса.

Сущность предлагаемого способа заключается в получении бензиновых фракций и/или ароматических углеводородов путем каталитической переработки низкооктановых углеводородных фракций, выкипающих в интервале температур 35 - 200oС (прямогонных бензинов, газовых конденсатов, компрессатов, широких фракций легких углеводородов и т.д.), в смеси с олефиновыми углеводородами, и/или спиртами, и/или простыми эфирами при повышенных температуре и давлении (процесс цеоформинг - II).

Прямогонные бензины, газовые конденсаты, компрессаты, широкие фракции углеводородов и т.д. в смеси с олефиновыми углеводородами, и/или спиртами, и/или простыми эфирами пропускают через реактор, заполненный катализатором на основе кристаллического элементосиликата или высококремнеземного цеолита со структурой типа пентасил при температуре 340 - 480oС, давлении 0,1 - 2,0 МПа и объемной скорости подачи жидкого сырья 0,5 - 4,0 ч-1.

В качестве катализаторов могут быть использованы любые катализаторы, пригодные для процесса цеоформинг. Следует отметить, что эффект от применения добавки олефиновых углеводородов, спиртов и /или эфиров сохраняется независимо от типа и состава катализатора.

Процессы превращения олефиновых углеводородов, спиртов и простых эфиров на цеолитных катализаторах протекают с выделением тепла (экзотермические процессы) и с образованием бензиновых фракций и ароматических углеводородов, что позволяет скомпенсировать эндоэффект процесса цеоформинг, снизить температуру проведения процесса и увеличить выход целевого продукта (бензиновых фракций) без изменения его качества.

Количество олефиновых углеводородов, и/или спиртов, и/или простых эфиров, добавляемых к углеводородным фракциям при их каталитической переработке, зависит от нескольких причин, а именно от состава перерабатываемого углеводородного сырья, от величины эндоэффекта процесса, который необходимо скомпенсировать, и может быть рассчитано. Для этого необходимо знать состав углеводородного сырья, состав продуктов, получаемых в процессе цеоформинг, состав используемой добавки и состав получаемых из нее продуктов. Затем рассчитывается эндоэффект процесса цеоформинг и экзоэффект процесса превращения добавки, а количество последней определяется из условия полной (если это необходимо) или частичной компенсации эндоэффекта процесса цеоформинг экзоэффектом процесса превращения добавки.

Примеры 5 - 13 иллюстрируют предлагаемый способ.

Пример 5. Фракцию газового конденсата следующего группового состава (маc. %): н-парафины 24,7; изо-парафины 28,3; нафтены 33,2; ароматические углеводороды 13,8, в смеси с 5 маc.% олефинов C2 - C4 контактируют в реакторе с катализатором (цеолит со структурой ZSM-5 со связующим -Al2О3 в количестве 30 маc%. Силикатный модуль цеолитного компонента был равен 86 (SiO2/Al2O3 моль)) при температуре 380oС, давлении 1,0 МПа и объемной скорости подачи жидкого сырья 2,1 ч-1. При этом образуется 26,0 маc.% углеводородных газов и 74,0 маc.% бензиновой фракции, в которой содержится 36,0 маc. % ароматических углеводородов. Катализатор между регенерациями перерабатывает 180 т сырья/т катализатора. Падение температуры по слою катализатора не обнаружено.

Пример 6. Фракцию газового конденсата следующего группового состава (маc. %): н-парафины 24,7; изо-парафины 28,3; нафтены 33,2; ароматические углеводороды 13,8, в смеси с 20 мас.% олефинов C2 - C4 контактируют в реакторе с катализатором (цеолит со структурой ZSM-5 со связующим -Аl2О3 в количестве 30 маc%. Силикатный модуль цеолитного компонента был равен 86 (SiO2/Al2O3 моль)) при температуре 380oС, давлении 1,0 МПа и объемной скорости подачи жидкого сырья 2,0 ч-1. При этом образуется 30,0 маc.% углеводородных газов и 70,0 маc.% бензиновой фракции, в которой содержится 37,0 маc. % ароматических углеводородов. Катализатор между регенерациями перерабатывает 146 т сырья/т катализатора. Наблюдается увеличение температуры по слою катализатора на 25-35oС.

Пример 7. Фракцию газового конденсата следующего группового состава (маc. %): н-парафины 24,7; изо-парафины 28,3; нафтены 33,2; ароматические углеводороды 13,8, в смеси с 15 маc.% метанола контактируют в реакторе с катализатором (элементосиликатом со структурой ZSM-5 со связующим -Аl2О3 в количестве 30 мас. % (SiO2/Al2О3 = 90, SiO2/Fe2O3 = 350)) при температуре 360oС, давлении 0,1 МПа и объемной скорости подачи жидкого углеводородного сырья 1,0 ч-1. При этом в расчете на углеводородные продукты реакции образуется 19,4 маc.% углеводородных газов и 80,6 маc.% бензиновой фракции, в которой содержится 34,5 маc.% ароматических углеводородов. Катализатор между регенерациями перерабатывает 220 т сырья/т катализатора. Падение температуры по слою катализатора не обнаружено.

Пример 8. Фракцию газового конденсата следующего группового состава (маc. %): н-парафины 26,8; изо-парафины 45,2; нафтены 18,0; ароматические углеводороды 10,0, в смеси с 5 маc.% олефинов C2 - C4 контактируют в реакторе с катализатором (элементосиликатом со структурой ZSM-5 со связующим -Al2О3 в количестве 20 мас.% (SiO2/Al2O3 = 80, SiO2/Fe2O3= 400)) при температуре 380oС, давлении 1,0 МПа и объемной скорости подачи жидкого сырья 2,2 ч-1. При этом образуется 22,8 маc.% углеводородных газов и 77,2 маc.% бензиновой фракции, в которой содержится 42,0 маc.% ароматических углеводородов. Катализатор между регенерациями перерабатывает 125 т сырья/т катализатора. Падение температуры по слою катализатора не обнаружено.

Пример 9. Фракцию газового конденсата следующего группового состава (маc. %): н-парафины 26,8; изо-парафины 45,2; нафтены 18,0; ароматические углеводороды 10,0, в смеси с 17 маc.% диметилового эфира контактируют в реакторе с катализатором (элементосиликатом со структурой ZSM-5 со связующим -Al2О3 в количестве 20 маc.% (SiO2/Al2O3 = 75, SiO2/Fe2O3 = 300, SiO2/B2O3 = 400)) при температуре 350oС, давлении 0,5 МПа и объемной скорости подачи жидкого углеводородного сырья 1,5 ч-1. При этом в расчете на углеводородные продукты реакции образуется 21,2 маc.% углеводородных газов и 78,8 маc.% бензиновой фракции, в которой содержится 40,0 маc.% ароматических углеводородов. Катализатор между регенерациями перерабатывает 140 т сырья/т катализатора. Наблюдается увеличение температуры по слою катализатора на 15-20.

Пример 10. Фракцию газового конденсата следующего группового состава (маc.%): н-парафины 33,2; изо-парафины 10,1; нафтены 36,2; ароматические углеводороды 20,5, в смеси с 5 маc.% олефинов C2 - C4 контактируют в реакторе с катализатором (элементосиликатом со структурой ZSM-5 со связующим -Al2O3 в количестве 20 маc.% (SiO2/Ga2O3 = 80, SiO2/Fe2O3 = 350)) при температуре 360oС, давлении 1,0 МПа и объемной скорости подачи жидкого сырья 2 ч-1. При этом образуется 16,5 маc. % углеводородных газов и 83,5 мас.% бензиновой фракции, в которой содержится 48,5 мас.% ароматических углеводородов. Катализатор между регенерациями перерабатывает 380 т сырья/т катализатора. Наблюдается увеличение температуры по слою катализатора на 5- 10oС.

Пример 11. Фракцию газового конденсата следующего группового состава (мас. %): н-парафины 33,2; изо-парафины 10,1; нафтены 36,2; ароматические углеводороды 20,5, в смеси с 20 мас.% олефинов С2 - C4 контактируют в реакторе с катализатором (приведенном в примере 8) при температуре 350oС, давлении 1,0 МПа и объемной скорости подачи жидкого сырья 2 ч-1. При этом образуется 18,0 маc.% углеводородных газов и 82,0 мас.% бензиновой фракции, в которой содержится 48,0 мас.% ароматических углеводородов. Катализатор между регенерациями перерабатывает 280 т сырья/т катализатора. Наблюдается увеличение температуры по слою катализатора на 35-40oС.

Пример 12. Гексан - гептановую фракцию НПЗ, не содержащую в своем составе ароматических углеводородов (ГГФ), в смеси с 10 маc. % олефинов C2 - С4 контактируют в реакторе с катализатором (приведенным в примере 9) при температуре 430oС, давлении 2,0 МПа и объемной скорости подачи жидкого сырья 2 ч-1. При этом образуется 38,3 маc. % углеводородных газов и 61,7 маc.% бензиновой фракции, в которой содержится 45,5 маc. % ароматических углеводородов. Катализатор между регенерациями перерабатывает 135 т сырья/т катализатора. Наблюдается увеличение температуры по слою катализатора на 15-20oС.

Пример 13. Гексан - гептановую фракцию НПЗ, не содержащую в своем составе ароматических углеводородов (ГГФ), в смеси с 15 маc. % бутанола контактируют в реакторе с катализатором (цеолит со структурой ZSM-5 со связующим -Аl2О3 в количестве 20 маc.%. Силикатный модуль цеолитного компонента был равен 70)) при температуре 440oС, давлении 1,0 МПа и объемной скорости подачи жидкого сырья 1,5 ч-1. При этом образуется 33,1 маc.% углеводородных газов и 66,9 маc.% бензиновой фракции, в которой содержится 48,5 маc.% ароматических углеводородов. Катализатор между регенерациями перерабатывает 150 т сырья/т катализатора. Наблюдается увеличение температуры по слою катализатора на 5- 10oС.

Пример 14. Гексан - гептановую фракцию НПЗ, не содержащую в своем составе ароматических углеводородов (ГГФ), в смеси с 5 маc.% метанола, 5 мас.% диметилового эфира и 5 мас.% олефиновых углеводородов C2 - C4 контактируют в реакторе с катализатором (цеолит со структурой ZSM-5 со связующим -Аl2О3 в количестве 20 маc.%. Силикатный модуль цеолитного компонента был равен 70)) при температуре 400oС, давлении 0,1 МПа и объемной скорости подачи жидкого сырья 1,5 ч-1. При этом образуется 30,2 мас.% углеводородных газов и 69,8 мас.% бензиновой фракции, в которой содержится 50,5 мас.% ароматических углеводородов. Катализатор между регенерациями перерабатывает 135 т сырья/т катализатора. Наблюдается увеличение температуры по слою катализатора на 10-15oC.

Таким образом, как видно из приведенных примеров и таблицы, использование предлагаемого способа по сравнению с прототипом позволяет: cнизить температуру сырья, поступающего на лобовой слой катализатора, на 20-50oC; уменьшить газообразование и, соответственно, увеличить выход целевого жидкого продукта на 5-15 маc.%; компенсировать падение температуры в реакторе по слою катализатора; увеличить количество сырья, перерабатываемого катализатором между регенерациями (т.е. увеличить срок службы катализатора).

Все выше перечисленное позволяет предположить, что предлагаемый способ найдет широкое промышленное использование.

Формула изобретения

1. Способ получения бензиновых фракций и ароматических углеводородов переработкой низкооктановых углеводородных фракций, выкипающих в интервале 35 200oС на цеолитных катализаторах при температуре 340 480oС и давлении 0,1 2,0 МПа и объемной скорости подачи сырья 0,5 4,0 ч-1 методом Цеоформинг, отличающийся тем, что углеводородные фракции перерабатывают в смеси с олефиновыми углеводородами, и/или спиртами, и/или простыми эфирами.

2. Способ по п.1, отличающийся тем, что олефиновые углеводороды, и/или спирты, и/или эфиры используют в количестве 5 20 мас. от количества подаваемых на катализатор низкооктановых углеводородных фракций.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к способам получения ароматических углеводородов из углеводородного сырья, содержащего алифатические олефины и парафины C2-C12
Изобретение относится к способам переработки легких бензиновых фракций и может найти применение на нефтеперерабатывающих и нефтехимических предприятиях, а также на предприятиях, перерабатывающих природный газ

Изобретение относится к катализаторам и способам получения высокооктановых бензинов и ароматических углеводородов из сырья, содержащего алифатические олефины и парафины С2-С12

Изобретение относится к приготовлению катализаторов риформинга и может быть использовано над предприятиях нефтеперерабатывающей и нефтехимической промышленности

Изобретение относится к газоперерабатывающей и нефтехимической промышленности, в частности, в получению высокооктанового неэтилированного бензина и ароматических углеводородов C7-C9 и выше из газового конденсата путем его каталитической переработки в присутствии высококремнеземного цеолитсодержащего катализатора

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, а именно к переработке газоконденсата с получением моторных топлив, а также топлив, образованных смешением отдельных фракций, выделенных из газоконденсата

Изобретение относится к нефтеперерабатывающей промышленности, а именно к способам получения высокооктанового бензина каталитическим риформингом

Изобретение относится к газоперерабатывающей и нефтехимической промышленности, в частности к получению высокооктанового бензина, из газового конденсата

Изобретение относится к получению моторных топлив и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности

Изобретение относится к способу получения высокооктанового бензина и ароматических углеводородов из углеводородного сырья, содержащего алифатические олефины и парафины, с использованием цеолитсодержащего катализатора и может быть применено в нефтепереработке и нефтехимии

Изобретение относится к способам получения ароматических углеводородов из углеводородного сырья и может быть использовано в нефтепереработке и нефтехимии для переработки газов, содержащих парафины и олефины C2-C4, и различных бензиновых фракций в высокооктановые бензины, обогащенные по сравнению с сырьем ароматическими углеводородами, а также в концентрат ароматических углеводородов

Изобретение относится к синтетическому слоистому материалу МСМ-56, его получению и использованию в качестве сорбента или компонента катализатора конверсии органических соединений

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности к методам получения высокооктановых бензинов и ароматических углеводородов из алифатических углеводородов C2-C12 в присутствии цеолитсодержащих катализаторов

Изобретение относится к способам переработки низкооктановых бензиновых фракций путем каталитического риформинга для получения высокооктановых бензинов

Изобретение относится к способам переработки низкооктановых бензиновых фракций путем каталитического риформинга для получения высокооктановых бензинов

Изобретение относится к области переработки углеводородного сырья на основе алифатических углеводородов, преимущественно обессеренного нестабилизированного газового конденсата с температурой выкипания 20-190 град

Изобретение относится к процессу изомеризации н-парафиновых углеводородов и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности

Изобретение относится к нефтехимии и может быть использовано для переработки низкооктановых бензиновых фракций путем каталитического риформинга для получения высокооктановых бензинов
Наверх