Гибкая трубчатая конструкция и способ ее формирования, способы формирования спирального элемента и соединения с трубчатой конструкцией

 

Использование: для изготовления трубчатых конструкций. Сущность: трубчатая конструкция, например труба или резервуар, снабжена стенкой, выполненной из пластмассы, композитов или эластомерных материалов, композитные материалы спирально наматываются и разделены эластомерными полосами, стенка имеет внутренний стеновой элемент, образованный непрерывным гибким пластмассовым цилиндром со спиральным выступом на его наружной поверхности, наружный слой выполнен из чередующихся спирально намотанных полос из композита и эластомера, композитная полоса имеет направленный радиально внутрь выступ, удаленный в осевом направлении от выступа на пластмассовом цилиндре, но перекрывающийся в радиальном направлении, цилиндр и слой разделены промежуточным слоем, выполненным из композитных и эластомерных полос, композитная полоса располагается между каждой парой соседних выступов и отделена от них эластомерной полосой, наружный стеновой элемент выполнен из чередующихся спирально намотанных композитных и эластомерных полос, причем последние имеют шаг намотки больше, чем внутренний стеновой элемент. 4 с.и. 19 з.п. ф-лы, 25 ил., 2 табл.

Изобретение касается трубчатых конструкций, выполненных частично из композитных материалов.

Композитный материал может рассматриваться как микроскопическая комбинация из двух или более определенных материалов, имеющих различную поверхность раздела между ними. Композиты обычно имеют прерывистые волокна или фазу из частиц и непрерывную матричную фазу.

Дисперсная или прерывная фаза является более жесткой и прочной, чем непрерывная матричная фаза и обычно имеется 10% или больше объемной доли дисперсной фазы.

Композиты могут быть разделены на классы различными способами. Одна схема классификации заключается в разведении их по виду армирования, используемого в дисперсной фазе, т.е. армирование частицами, армирование волокнами или слоистые композиты. Армированные волокнами композиты содержат армирования, имеющие длины, значительно большие, чем их поперечные размеры. Армированные волокном композиты могут быть дополнительно разделены на те, что содержат дисперсные или непрерывные волокна. Композит может считаться дисперсно-волокнистым или коротковолокнистым композитом, если его свойства изменяются с длинной волокна. С другой стороны, когда длина волокна является такой, что любое дальнейшее ее увеличение не приводит, например, к увеличению модуля упругости композита, то последний рассматривается в качестве композита, армированного непрерывными волокнами. Большинство армированных непрерывными волокнами композитов содержат волокна, которые сравнимы по длине или больше, чем общие размеры композитной части.

Композиты с органической матрицей, армированной стекловолокном, являются более известными и широко использующимися и имеют широкое применение в промышленности, потребительских товарах, оборонной и аэрокосмической промышленностях. Обычно используемое стекловолокно известно как E-стекло, кальциевое альминоборосиликатное стекло, имеющее пригодный баланс механических, химических и электрических свойств при умеренной стоимости. Другие материалы армирования волокном включают синтетические органические волокна (например, нейлон, полиэфир и арамиды) и синтетические неорганические волокна (как то, бор, углерод и карбид кремния).

Матричные материалы схватывают диапазон от полимеров до металлов и керамики. Полимеры являются обычно наиболее используемыми матричными материалами, в частности органические полиэфиры и винилэфирные смолы. Полимеры отличаются низкой плотностью, относительно низкой прочностью, нелинейной зависимостью между напряжением и деформацией и относительно высокой зависимостью деформации-разрушения. Когда требования к свойствам оправдывают дополнительные расходы, то могут использоваться другие матрицы, включая эпоксидную смолу, бутадиен, висмалемид, полиимиды и другие термореактивные смолы и термопластичные смолы. Могут использоваться также совместно смешанные пучки волокон.

Композитные структуры, включающие непрерывные однонаправленные ориентированные волокна, могут быть по своей сущности радиально анизотропными, т.е. они проявляют существенно различные свойства по различным осям. Прочность, жесткость и коэффициент теплового расширения могут изменяться более, чем в 10 раз в различных направлениях. В направлении волокна нагрузки воспринимаются главным образом волокнами, которые определяют механические свойства в этом направлении. Волокна деформируются очень мало и ограничивают матрицу небольшими деформациями. С другой стороны, волокна не оказывают значимого содействия в направлении, перпендикулярном волокнам, в результате чего матрица действует в качестве непрерывной грузонесущей конструкции и волокна двигаются вместе с деформирующейся матрицей, не оказывая существенного сопротивления деформации. Механические свойства, замеренные поперек направлению армирования, будут, таким образом, аналогичны тем, что у неармированных матричных материалов.

Цель матрицы композита состоит в удержании армирующих волокон в правильной ориентации и положении с тем, чтобы они могли нести предназначенные нагрузки, распределять нагрузки более или менее равномерно среди волокон и обеспечивать сопротивление распространению трещины и повреждению Механические свойства матрицы обычно оказывают небольшое влияние на общую прочность композита, кроме характеристик передачи нагрузки и прочности поверхности раздела. Матрица в основном определяет общие ограничения температуры эксплуатации композита и может также контролировать его стойкость к окружающей среде.

Трубчатая конструкция, подверженная напряжению, обусловленному давлением на закрывающемся свободном конце, как например резервуар давления или нагнетающий трубопровод, может подвергаться воздействию внутреннего или наружного давления, а поэтому должна иметь конструкцию трубчатой стенки, одновременно противостоящую продольным и окружным направлениям. Кроме того, трубчатая конструкция может подвергаться воздействию одного или комбинации из наружного нормального или касательного напряжений, обусловленных наружным давлением, изгибающей, окручивающей или термической нагрузкой.

В случае жестких трубчатых конструкций, использующих изотропные материалы, как то сталь или другие металлы, конструкция одновременно может сопротивляться продольным и окружным напряжениям с одной стеновой конструкцией.

Поскольку однонаправленные композиты обычно имеют исключительные свойства в направлении армирующих волокон, но слабы к посредственным свойствам перпендикулярно (поперек) волокнам, то подход, выбранный для известных армированных непрерывными волокнами композитных трубчатых конструкций, подверженных воздействию более чем одной размерной нагрузки, заключался в комбинировании слоев с различной ориентацией волокон. Таким образом, более слабые свойства перпендикулярно направлению волокон увеличиваются за счет более лучших свойств в направлении ориентации волокна. Примыкающие слои скрепляются вместе в слоистую структуру и ориентированы под различными углами один относительно другого так, что эффективные свойства слоистой структуры отвечают некоторому конкретному условию нагружения. Внешние нагрузки или напряжения, прикладываемые к композитной трубчатой конструкции, приводят к возникновению внутренних напряжений, которые являются различными в индивидуальных слоях. Наружные нормальные напряжения могут приводить не только к внутренним нормальным напряжениям, но и к внутренним касательным напряжениям, а наружные касательные напряжения могут приводить к внутренним нормальным напряжениям, а также внутренним касательным напряжениям. Поэтому, эффективные свойства слоистых материалов подгоняются, чтобы удовлетворять требованиям характеристик за счет использования теории слоистости, по которой соотношения между напряжением и деформацией для тонкой слоистой пластины создаются для случая усилий пластинчатой мембраны и изгибающих моментов.

Известные слоистые композитные трубчатые конструкции используют целый ряд конфигураций армирования непрерывными волокнами для достижения требуемых эффективных слоистых свойств. Сюда входит конфигурация, ориентирующая армирующие волокна под постоянным углом спирали, что разлагает различные внешние усилия в одно результирующее усилие в направлении волокна. Другая конфигурация, используемая при отсутствии закручивающих сил, комбинирует продольно ориентированные армирующие волокна (параллельные оси цилиндра) для сопротивления осевым нагрузкам вместе с ориентированными в круговую армирующими волокнами (перпендикулярно оси цилиндра) для противостояния кольцевым нагрузкам.

Другая конфигурация сочетает ориентированные по кругу армирующие волокна для сопротивления части кольцевой нагрузке вместе со спирально ориентированными армирующими волокнами для сопротивления закручивающим и осевым нагрузкам и части кольцевой нагрузки. Еще одна конфигурация ориентации непрерывных волокон, использующаяся в известных композитных трубчатых конструкциях, сочетает ориентирование в круговую армирующих волокон для сопротивления части кольцевой или сдавливающей нагрузки вместе со спирально ориентированными волокнами или сопротивления скручивающим нагрузкам и части сдавливающей и осевой нагрузкам вместе с продольно ориентированными армирующими волокнами для сопротивления части осевой нагрузки.

Когда конструкция должна быть относительно жесткой и от нее не требуется значительной гибкости, то слоистая структура может использовать соответствующие конфигурации для удовлетворения предполагаемых условий приложения нагрузки. Однако, когда требуется гибкая конструкция, то тогда необходимы дополнительные соображения.

Жесткость к изгибу или жесткость на изгиб трубчатой конструкции является мерой ее жесткости или сопротивлением к смещению перпендикулярно ее длине, что определяется как эластичными свойствами материала, так и поперечными размерами. Жесткость к изгибу трубчатой конструкции может быть выражена радиусом кривизны (r), образующимся от приложения изгибающего момента (М) и является пропорциональной модулю упругости (Н) и моменту инерции (I), что определяется формулой l/r = M/EI. Прогиб при изгибании трубчатой конструкции приводит к сжатию одной половины стенки цилиндра и растяжению другой половины с нейтральной осью, не изменившейся в длине. Однако в отличие от осевого сжатия или растяжения, продольное осевое напряжение линейно изменяется выше и ниже от нейтральной оси.

Трубчатые конструкции ограничены в такой степени, в какой они могут отклоняться перпендикулярно своей длине при изгибании под действием максимальной величины растягивающего или сжимающего напряжения (любое вызывает разрушение), которыми стенка цилиндра в самой удаленной от нейтральной оси точке может нагружаться без разрушения. Такая зависимость может быть выражена формулой о- = Eс/r, где о- = продольное напряжение в стенке цилиндра на расстоянии от центральной оси (с) цилиндра, дающее радиус кривизны (r). Продольное напряжение, образующееся в стенке цилиндра, отклоняющейся при изгибании, является, таким образом, обратно пропорциональным радиусу кривизны и прямо пропорциональным расстоянию от центральной линии цилиндра. Большая кривизна (меньший радиус) увеличивает осевое напряжение в стенке цилиндра, а максимальное напряжение наблюдается на периферии цилиндра на большем расстоянии от его нейтральной оси. Прочность на изгиб трубчатых конструкций обычно называют максимальным напряжением, которое может выдерживать поверхностный элемент цилиндра при изгибе без разрушения.

Для композитных трубчатых конструкций фундаментальные принципы управления изгибанием остаются такими же. Однако, существуют некоторые дополнительные факторы. Для композитных трубчатых конструкций, содержащих армированные непрерывными волокнами слоистые слои, ориентированные в различных направлениях относительно друг друга, максимальное напряжение при изгибе не обязательно возникает на самом внешнем периметре цилиндра, как у изотропных материалов. Вследствие различной направленной ориентации волокнистого армирования, каждый слоистый слой вероятно имеет различную прочность и жесткость при измерении в направлении оси цилиндра. Когда изгибающий момент прикладывается к композитной трубчатой конструкции, то продольное напряжение возникает в каждом слоистом слое пропорционально модулю упругости этого слоя и его расстоянию от нейтральной оси. Максимальное напряжение при изгибе в каждом слое наблюдается из радиальной наружной кромки каждого слоистого слоя. Это продольное напряжение, возникающее в каждом слоистом слое, воспринимается прочностью каждого слоя с разрушением, происходящим в индивидуальном слоистом слое с наименьшим пределом происходящим в индивидуальном слоистом слое с наименьшим пределом прочности (в пределах его жесткости) относительно создаваемого напряжения при изгибе. Поэтому, хотя слоистая структура композитных трубчатых конструкций создает потенциально другое место разрушения при изгибе, отличное от наружного периметра цилиндра, максимальный изгиб известных композитных трубчатых конструкций ограничивается максимальным продольным напряжением, которое может выдерживать самый первый разрушающийся слоистый слой.

Анизотропная сущность армированных непрерывными волокнами композитов накладывает ряд ограничений на способность увеличивать максимальный прогиб известных композитных трубчатых конструкций. Слоистые слои, содержащие волокнистые армирования, ориентированные параллельно напряжению при изгибе, проявляют наивысший предел прочности и наибольший модуль упругости. Волокна, ориентированные поперек напряжению при изгибе, будут обнаруживать не только наименьший модуль упругости, но и наименьший предел прочности.

Если даны высокие уровни прочности и предсказуемости армированных непрерывными волокнами композитных конструкций при осевом растяжении, то мало вероятно, чтобы та часть известной стенки цилиндра, которая подвергается растяжению, осевого расширения не может быть на практике приведена в соответствие с обычным расширением стальных устройств, существенные ограничения накладываются на характеристику известных композитных трубчатых конструкций, когда они используются в качестве резервуаров давления или содержащих давление трубопроводов.

Для создания гибкой трубчатой конструкции были предложены различные конструкции (см. например, патент США, 3858616, кл. F 16 L 11/08, 1975), в которых стенка конструкции изготавливалась из нескольких различных компонентов. В случае гибких трубчатых конструкций, использующих изотропные материалы, как то сталь и другие металлы, существует значительное снижение эффективности конструкции в противоположность жестким трубчатым конструкциям, так как конструктор должен обеспечивать конструктивную стенку или слой, противостоящий каждой из продольных и окружных усилий. Одна стенка конструкции или слой должен быть ориентирован так, чтобы главным образом оказывать сопротивление окружным усилиям, одновременно с этим обладая способностью простираться в осевом направлении для обеспечения изгиба, тем самым обладая незначительным или никаким сопротивлением к продольным усилиям. Вторая стенка или слой должен быть ориентирован так, чтобы периодически противодействовать продольным силам, при этом одновременно обладая способностью простирать себя в осевом направлении для обеспечения изгибания, тем самым имея незначительное сопротивление или никакого к окружным усилиям. Оба независимых слоя служат для осуществления их специальных функций за счет использования узких спирально намотанных полос, которые в обоих случаях периодически подвергаются напряжению вдоль длины полосы с небольшим напряжением или отсутствием его поперек ширины узкой полосы. По этой причине изотропные материалы, как например, сталь и другие металлы, являются неэффективными материалами для таких гибких конструкций, поскольку прочность материала в направлении поперек длины полосы остается недоиспользованной и тем самым теряется при противодействии напряжением, прикладываемым к трубчатой конструкции.

Обычно, известные стальные гибкие трубчатые конструкции используют механизм спирально ориентированных взаимносцепленных металлических полос, служащих для ограничения максимальной осевой деформации при изгибании в любой точке по длине цилиндра. Этот механизм обеспечивает за счет выполнения U- или Z - образного профиля и последующего формования его в спирально ориентированную стальную полосу таким образом, чтобы обеспечить блокировку полосы при ее формировании вокруг трубы. При изгибании этот механизм блокировки ограничивает зазор между соседними полосами максимально установленным размером, тем самым образуя определенную удерживающую "сетку", через которую внутренняя пластмассовая облицовка или пузырь не может выдавливаться.

Однако как отмечалось выше, изотропные материалы, как то сталь и другие металлы, являются неэффективными материалами для таких гибких конструкций, поскольку прочность материала в направлении поперек длины полосы не доиспользуется и тем самым теряется при сопротивлении напряжениям, прикладываемым к трубчатой конструкции.

Хотя композиты считаются анизотропными и должны, поэтому быть более эффективными, чем изотропные материалы в таких конструкциях, однако механизмы блокировки, как те, что использовались для стальных конструкций, не практикуются с гибкими трубчатыми конструкциями, использующими армированные непрерывными волокнами композитные материалы. Хотя линейная U- или Z - образной формы армированная волокном композитная часть может быть изготовлена с помощью процесса pultrusion/"проталкивание", однако последний не практикуется для изготовления спирально ориентированных компонентов, использующихся в стальных конструкциях, поскольку такая часть не может подвергаться последующему формированию.

Таким образом, задачей настоящего изобретения является обеспечение гибкой трубчатой конструкции, допускающей использование волокнистых армированных композитов в качестве конструкционного компонента.

Вообще настоящее изобретение обеспечивает трубчатую конструкцию, имеющую окружную стенку, выполненную из двух расположенных рядом стеновых элементов. Один из стеновых элементов содержит несколько расположенных рядом слоев, один из которых является непрерывным и гибким и имеет спирально намотанный радиальный выступ, направленный в сторону другого слоя. Другой слой включает первую спирально намотанную композитную полосу, имеющую радиальный выступ, направленный в сторону другого слоя. Другой слой также включает спирально намотанную эластомерную полосу, помещенную между соседними проходами или витками композитной полосы. Выступы одного и другого слоев ступенчато расположены относительно друг друга в осевом направлении и перекрывают друг друга в радиальном направлении. Слои разделены промежуточным слоем, имеющим спирально намотанную композитную полосу, расположенную между каждой парой выступов, и закрыты с концов спирально намотанными эластомерными полосами с тем, чтобы разместить эластомерную полосу между композитной полосой промежуточного слоя и одного слоя с выступами. Композитные полосы слоев перекрывают друг друга в осевом направлении для получения непрерывного композитного барьера в одном стеновом элементе в радиальном направлении. Другой стеновой элемент содержит слой из чередующихся спирально намотанных композитных и эластомерных полос. Шаг спирально намотанных композитных полос у радиально наружного стенового элемента больше, чем шаг композитных полос у радиально внутреннего стенового элемента. Эластомерные полосы в каждом стеновом элементе равномерно распределяют композитные полосы на соответствующем стеновом элементе при изгибании трубчатой конструкции для поддержания ее конструктивной целостности.

При изгибании три слоя, которые содержит один стеновой элемент, служат для обеспечения и облегчения переориентации композитных полос способом, который стремится свести к минимуму напряжения, возникающие в таких структурных компонентах, и который пытается поддержать максимальную равномерную деформацию по длине цилиндра за счет ограничения максимального осевого расстояния, разделяющего любые две соседние спирально намотанные полосы, жесткость на изгиб цилиндра в значительной степени определяется радиальной толщиной и модулем упругости непрерывного гибкого слоя. Промежуточный и другие слои одного стенового элемента обеспечивают основное сопротивление окружным растягивающим напряжениям, обусловленным внутренним давлением, и сопротивление окружным сжимающим напряжениям, обусловленным осевым приложением нагрузки и наружным давлением. При изгибании деформации эластомерного материала между соседними спирально намотанными композитными полосами допускается укорачивание той половины стенового элемента, которая подвергается сжатию за счет перехода части эластомерного материала в противоположную половину стенового элемента, подвергающегося растяжению.

Другой стеновой элемент обеспечивает сопротивление продольным растягивающим напряжениям, обусловленным внутренним давлением, скручивающей и осевой нагрузками, и сопротивление сжимающим напряжениям, обусловленным наружным давлением. Когда действуют изгибающие усилия, то части стеновых элементов, находящиеся под сжатием, достигают укорачивания по их продольной оси за счет уменьшения расстояния между соседними композитными полосами. Части стенового элемента, находящиеся под растяжением, достигают удлинения по своей продольной оси за счет увеличения расстояния между соседними композитными полосами. Для любой заданной длины цилиндра при изгибании увеличение в районе выше нейтральной оси равно уменьшению в районе ниже нейтральной оси. При изгибании часть эластомерного материала в уменьшившейся части между соседними композитными полосами на половине цилиндра, которая укоротилась в осевом направлении за счет сжатия, перераспределяется в увеличившуюся часть между соседними композитными полосами на половине цилиндра, находящейся под растяжением. Таким образом, минимальное напряжение при изгибе образуется в армированных волокном композитных полосах и скорее изгибание становится возможным за счет изменения их геометрии и деформации эластомерного материала.

Трубчатая конструкция предпочтительных вариантов сводит к минимуму опору на ограниченные и сильно изменяющиеся максимальные величины напряжения сжатия для обеспечения достижения меньшего радиуса кривизны.

Трубчатая композитная конструкция, которая может подвергаться воздействию внутреннего или наружного давления, теплового или скручивающего напряжения, или комбинации этих нагружающих условий, должна быть выполнена так, чтобы предел прочности слоистого материала был достаточным, чтобы выдерживать воздействие всех напряжений, включая напряжение при изгибе, без разрушения. Поэтому прикладываемое напряжение к цилиндру при изгибании должно добавляться к прикладываемому напряжению, обусловленному другими условиями нагрузки, при определении требуемых ориентации и толщины слоистой структуры. В предпочтительном варианте, поскольку структурные компоненты трубчатой конструкции, в частности спирально намотанные композитные полосы, не подвергаются существенному напряжению при изгибании, то толщина слоистого материала определяется в основном другими условиями приложения нагрузки.

На фиг. 1 изображен общий вид сбоку трубчатой конструкции с постепенно удаленными ее слоями; на фиг. 2 - вид сбоку конструкции, представленной на фиг. 1; на фиг. 3 - вид в сечении фиг. 2 по нейтральной оси, выполненном по линии 3А-3А; на фиг. 4 - вид, аналогичный представленному на фиг. 3, но выполненных по линии 3В-3В; на фиг. 5 - вид, аналогичный представленному на фиг. 3, выполненный по линии 3С-3С; на фиг. 6 - общий перспективный вид другого варианта трубчатой конструкции; на фиг. 7-16 - схематичное изображение последовательных этапов изготовления конструкции, показанной на фиг. 1; на фиг. 17 - показана установка, использующая в качестве альтернативы процедуре, показанной на фиг. 7; на фиг. 18-25 - схематично показаны последовательные этапы операции соединения двух трубчатых конструкций, аналогичных той, что показана фиг. 1.

Как показано на фиг. 1, трубчатая конструкция 10 имеет окружную стенку 12, выполненную из двух установленных рядом стеновых элементов 14, 16. Наружная оболочка 18 заканчивает стенку 12 и обеспечивает защиту от окружающей среды для элементов 14, 16.

Как показано на фиг. 3, радиально внутренний стеновой элемент 14 содержит три отдельных слоя, а именно, 20, 22 и 24. Внутренний слой 20 состоит из непрерывного гибкого пластмассового цилиндра 26, имеющего спирально намотанный выступ 28, направленный радиально наружу от него. Слой 20 обычно изготавливается из термопластического полимера или эластомерного материала и является предпочтительно непроницаемым для жидкостей, воздействию которых он может подвергаться. В некоторых случаях, слой 20 может включать внутреннюю обкладку (не показано) из непроницаемого материала, в результате чего цилиндр 26 может быть изготовлен из материала, имеющего различные свойства.

Наружный слой 24 состоит из спирально намотанной композитной полосы 30, имеющей радиально внутренний выступ 32, направленный в сторону внутреннего слоя 20. Композитная полоса 30 имеет такой же шаг и направление, что и спиральные выступы 28. Однако выступы 32 и 28 ступенчато располагаются в осевом направлении и перекрываются в радиальном направлении. Вторая спирально намотанная композитная полоса 34 расположена между последовательными витками полосы 30 и размещена в осевом направлении так, чтобы быть выровненной с выступом 28. Каждая из композитных полос 30, 34 состоит из пучка волокон или ровницы, например, E-стекла, в основном ориентированного в направлении намотки с матрицей диспергированной между волокон. Волокна в ровнице могут удерживаться поперечными волокнами, идущими вокруг ровницы для обеспечения гладкой наружной поверхности и сопротивление скручивающим нагрузкам в полосе, возникающих при изгибании конструкции. Матрица, например, может быть полиэфиром. Обычно, композитные полосы имеют 75% по весу волокон и 25% по весу матрицы, хотя, как будет описано ниже, могут использоваться другие материалы и соотношения.

Между композитными полосами 30, 34 расположена пара спирально намотанных эластомерных полос 36, 38. Эти полосы могут быть из любого подходящего эластомера, например, неопрена. Полосы 36 и 38 расположены на противоположных концах композитной полосы 30 и служат для поддержания композитных полос 30 и 34 на расстоянии друг от друга.

Промежуточный слой 22 расположен между слоями 20, 24 и состоит из двух композитных спирально намотанных полос 40, 42. Каждая из этих полос 40, 42 имеет тоже направление и шаг, что и полосы 30 и 34 и расположена в осевом направлении так, чтобы перекрывать в осевом направлении каждую из соседних полос 30, 34 наружного слоя 24. Каждая из полос 40 и 42 расположена между соседними выступами 32, 28. Две эластомерные полосы 44, 46 и 48, 50 взаимодействуют с композитными полосами 40 и 42 соответственно и расположены на противоположных их сторонах. Таким образом, полоса 44 расположена между композитной полосой 40 и выступом 28, а эластомерная полоса 46 расположена между полосой 40 и выступом 32. Аналогично, эластомерные полосы 48 и 50 расположены между композитной полосой 42 и выступами 32 и 28 соответственно.

Слой из уменьшающего трение материала, например из полиэтиленовой пленки 52, расположен между внутренним слоем 20 и промежуточным слоем 22. Аналогично слой из уменьшающего трение материала 54 располагается между наружным слоем 24 и промежуточным слоем 22, тем самым сводя к минимуму сопротивление относительному осевому перемещению между слоями 22 и 24.

Наружный стеновой элемент 16 отделен от внутреннего стенового элемента 14 уменьшающей трение пленкой 56. Наружный стеновой элемент 16 состоит из внутреннего и наружного слоев 58, 60, которые в свою очередь разделены уменьшающей трение пленкой 62. Каждый из слоев 58 и 60 состоит из чередующихся композитных полос 64 и эластомерных полос 66, намотанных спирально. Шаг между последовательными нитками каждой полосы 64 больше, чем у композитных полос внутреннего стенового элемента 14, в результате чего, вообще, будет иметь место большее число индивидуальных полос 64, чем полос 30, 34. Для большей ясности, каждая отдельная полоса 64 обозначена с суффиксом a, b на фиг. 3,А и соответствующая эластомерная полоса 66 также обозначена с суффиксами a, b, c. Шаг полос 64, 66 в наружном слое 60 является таким же, как и у внутренних слоев 58, но противоположной направленности, как показано на фиг. 1.

Уменьшающая трение пленка 68 располагается между наружной оболочкой 18 и слоем 60 для сведения к минимуму сопротивления относительному перемещению между оболочкой и наружным слоем 60.

При работе начальная жесткость на изгиб конструкции 10 определяется гибким слоем 20. Композитные полосы наружного слоя 24 и промежуточный слой 22 стенового элемента 14 по существу образуют спиральные пружины, выполненные из композитного материала и не оказывают существенного содействия жесткости на изгиб всей конструкции. Перекрытие композитных полос промежуточного слоя 22 и наружного слоя 24 образует непрерывный барьер из композитного материала в радиальном направлении в стеновом элементе 14 и, тем самым, поддерживает слой 20 против внутреннего давления, чтобы предотвратить вдавливание слоя 20 через стеновой элемент 14. Эластомерные полосы служат для поддержания композитных полос равномерно распределенными по осевой длине трубчатой конструкции и взаимодействия с выступами 28 и 32 для поддержания композитных полос 42 промежуточного слоя в центре между композитными полосами 30, 34 наружного слоя 24. Как показано на фиг. 4 и 5, когда трубчатая конструкция изгибается поперек своей продольной оси, то композитные полосы на одной стороне от нейтральной оси расходятся, а композитные полосы на другой стороне от нейтральной оси сходятся. Это достигается за счет смещения целиком эластомерных полос, которые, однако, сохраняют равномерное приложение нагрузки к композитной полосе для поддержания их равномерно распределенными, а также для поддержания непрерывного композитного барьера в радиальном направлении.

При изгибании проведение каждого из компонентов, содержащихся в слоях, определяется поведением компонентов, имеющих большую жесткость на изгиб. При изгибании тот компонент, который имеет наибольшую жесткость на изгиб, будет первый добиваться своей измененной формы и стремится сместить компонент со следующей наибольшей жесткостью на изгиб, чтобы он следовал его перемещению. Компонент со второй наибольшей жесткостью на изгиб будет принимать свою измененную форму в пределах ограничений, накладываемых компонентом с наибольшей жесткостью на изгиб, и стремится сместить компонент с третьей наибольшей жесткостью на изгиб, чтобы он следовал его перемещению За счет изменения размеров и модулей упругости композитных, пластмассовых и эластомерных компонентов, образующих слои, можно определить поведение каждого из компонентов при изгибании. Для трубчатой конструкции с внутренним диаметром 76,2 мм и углом спирали 70o следующие размеры компонентов и модули упругости обеспечивают следующие соответствующие напряжения при изгибе для каждого компонента, приведенные в табл.1.

В приведенном выше примере, пластмассовый цилиндр 26 диктует поведение остальным компонентам, благодаря его значительно большей жесткости на изгиб относительно других компонентов. Спирально намотанные эластомерные полосы, благодаря их следующей наибольшей жесткости на изгиб, будут изменять свою форму в пределах, определенных пластмассовым цилиндрическим компонентом и в свою очередь заставляет приспосабливаться композитные полосы с меньшей соответствующей жесткостью на изгиб. За счет надежного контролирования поведения компонентов таким образом, а также благодаря минимальной жесткости на изгиб структурных композитных компонентов, трубчатая конструкция может прогибаться при изгибе по радиусу кривизны, превышающему в 10 раз ее диаметр, не подвергая композитные структурные компоненты значительным напряжениям при изгибе. При изгибе, половина внутреннего стенового элемента, подверженная растяжению, достигает удлинения вдоль своей продольной оси за счет увеличения осевого расстояния между выступами, идущими от внутреннего пластмассового цилиндра. Противоположная половина такого внутреннего стенового элемента, находящаяся под сжатием, достигает укорачивания по своей продольной оси за счет уменьшения расстояния между выступами, идущими с внутреннего пластмассового цилиндра. Это регулирование расстояния между выступами пластмассового цилиндра 26 с высокой жесткостью на изгиб выводит деформацию эластомерного материала из уменьшившейся зоны в половине цилиндра, укоротившейся осевом направлении при сжатии, в увеличившуюся зону в половине цилиндра, удлинившуюся в осевом направлении при растяжении. Такая деформация эластомерного материала из одной половины трубчатой конструкции в другую приводит к переориентации спирально намотанных композитных полос, имеющих наименьшую жесткость на изгиб. При изгибе выступы 28 и 32 взаимодействуют с эластомерными полосами промежуточного слоя 22 для гарантирования, что композитные элементы остаются перекрытыми и образуется непрерывная стенка из композитного материала.

Наличие пленок 52, 54, 56, 62 и 68 устраняет непосредственный контакт между слоями и поэтому, облегчает относительное перемещение между элементами слоев во время изгибания.

Основная функция наружного стенового элемента 16 заключается в сопротивлении осевым нагрузкам. Когда угол спирали полос 64 уменьшается, т.е. шаг увеличивается, то осевая прочность конструкции увеличивается.

Соответствующие радиальные толщины композитных полос 30, 34 и 40, 42, 64 и соответствующие шаги каждого стенового элемента определяют максимальную грузонесущую способность, доступную для данной конструкции. Как видно из табл. 1, приложенной к описанию, параметры являются до некоторой степени взаимозависимыми, но могут регулироваться, чтобы приспосабливаться к различным рабочим условиям.

Как видно из ряда А табл. 1, когда максимальное внутреннее давление увеличивается, то радиальная толщина каждого слоя 22, 24 и 58, 60 аналогично увеличивается по существу по линейной зависимости. Следует отметить, однако, что жесткость на изгиб остается по существу такой же, указывая на то, как отмечалось выше, что жесткость на изгиб определяется в основном цилиндром 26.

Ряд B в табл. 1 показывает результат изменения угла спирали в наружном стеновом элементе 16, как можно предполагать, когда угол спирали увеличивается с 40 до 50o (шаг уменьшается), то существенно затрагивается осевая прочность и необходимо большое увеличение толщины слоев 53, 60. Имеет место небольшое уменьшение толщины слоев 22, 24, но его недостаточно для компенсации увеличения у элементов 58, 60.

Ряд С показывает, как изменение угла спирали компонентов стенового элемента 14 существенно не влияет на жесткость на изгиб, но требует большого увеличения радиальной толщины для поддержания максимального допустимого значения внутреннего давления при изменении с 70 до 60o. Имеет место соответствующее уменьшение толщины слоев 58, 60, но это отражается в уменьшении осевой прочности.

Ряды Д и Е ясно показывают, как углы спирали композитных полос стеновых элементов 14, 16 имеют оптимальные величины для поддержания максимально допустимого внутреннего давления.

В вышеприведенных примерах эластомерные полосы имеют осевую ширину 6,35 мм, а композитные полосы - ширину 31,75 мм.

В качестве сравнения табл. 2 показывает конфигурацию компонентов в трубах диаметром три и шесть дюймов, предназначенных для выдерживания одинакового максимального внутреннего давления, а именно 351,55 кг/см2.

Таким образом, требуется двойное увеличение толщины, но при этом достигается значительное четырехкратное увеличение осевой прочности. Большое увеличение жесткости на изгиб относится главным образом за счет увеличенного диаметра цилиндра 26.

Конструкция, показанная на фиг. 1, 2 и 3, представляет относительно простую конструкцию стены, пригодную для использования для различных применений. В тех случаях, когда труба должна использоваться в окружающей среде, требующей высокого уровня целостности, стеновой элемент 14 может быть сложен так, что стеновой элемент 16 располагается между двумя стеновыми элементами, каждый из которых аналогичен стеновому элементу 14. Это обеспечивает определенную степень избыточности для сдерживания слоя 20 в случае, если в элементе 14 произойдет повреждение. Эта конструкция показана на фиг. 6, где одинаковые цифровые обозначения будут использованы для обозначения аналогичных элементов с добавлением приставки "1" для ясности.

Как показано на фиг. 6, радиально внутренний стеновой элемент 114, имеющий слои 120, 122, 124, как описано выше со ссылками на фиг. 1 и 2, окружен стеновым элементом 116, состоящим из слоев 158 и 160. Другой стеновой элемент 170 расположен радиально наружу от стенового элемента 116 и имеет конструкцию, аналогичную стеновому элементу 114. Однако направление спирального композита и эластомерных полос у стенового элемента 114, хотя шаг у них одинаковый. Стеновой элемент 170 обеспечивает дополнительное сопротивление окружным растягивающим напряжением, обусловленным внутренним давлением, сопротивление окружным сжимающим напряжениям, обусловленным продольным приложением нагрузки и наружным давлением, а также сопротивление внешним ударом и повреждению в процессе транспортировки.

Преимущество конструкции, показанной на фиг. 6, заключается в том, что в ней имеет место нейтральное распределение крутящего момента, благодаря осевым нагрузкам и внутреннему давлению, когда используются два аналогичных, но противоположных стеновых элемента 114, 170. Это уменьшает изгибание стенки и конечно нагрузки от крутящих моментов, которые могут действовать на муфты на противоположных концах трубчатой конструкции. Стеновой элемент 170 может также использоваться для регулирования плотности трубчатой конструкции до требуемого уровня.

Будет очевидно, что приведенные выше конфигурации являются только примером и что могут использоваться другие толщины стеновых элементов или другие шаги, чтобы отвечать конкретным условиям приложения нагрузки. Соответствующая толщина и расположение различных слоев могут быть оптимизированы, чтобы удовлетворять этим параметрам, сохраняя при этом базовые конструктивные элементы, показанные на чертежах.

Вышеприведенное описание касается в основном пластмассового материала для слоя 20, композитных полос и эластомерных полос в стеновых элементах 14 и 16. Будет, однако, очевидно, что широкий спектр материалов может быть использован для изготовления индивидуальных элементов, которые могут быть выбраны для удовлетворения конкретных условий применения. Так, например, пластмассовый слой может быть термореактивным или термопластическим полимером, как то, полиэтиленом, полибутиленом, полипропиленом, полиуретаном, фторопластмассами, полиамидами или полиамид-имидами.

Аналогично композитная полоса может изготавливаться из соответствующего волокна, снабженного соответствующей матрицей. Типичными из таких волокон является стекловолокно, нейлон, полиэфир, арамид, бор, углерод, и карборунд. Типичными из таких матричных материалов являются полиэфир, сложный виниловый эфир и эпоксидная смола. Индивидуальные характеристики и преимущества использования каждого из материалов хорошо известны в области композитов и поэтому не требуют дальнейшего описания.

Эластомерные материалы могут также выбираться из широкого диапазона существующих материалов. Эластомерные материалы включают натуральный и синтетический термореактивный каучук и термопластические эластомеры. Синтетический каучук включает нитриловый каучук, ЕРДМ, бутиловый каучук, силиконовый каучук и различные специальные смеси, созданные для специальных условий эксплуатации. Термопластические эластомеры включают синтетические блок-сополимеры, полиолефиновые смеси, эластомерные сплавы, термопластические полиуретаны, термопластические сополимеры простого эфира и термопластические полиамиды.

Способ изготовления трубчатой конструкции 10 более подробно показан на фиг. 7-16, откуда видно, что элементы технологической установки в отдельности хорошо известны, тогда как их комбинация для осуществления способа, описанного ниже, и получения трубчатой конструкции, описанной выше, является новой. Способ описан применительно для изготовления трубчатой конструкции, показанной на фиг. 1 и 2, и одинаковые цифровые обозначения использованы для одинаковых деталей.

Как показано на фиг. 7 трубчатая стенка 26 промежуточного слоя 20 выдавливается через экструзионную матрицу 200 и движется в осевом направлении с помощью захватывающих колес 202. Радиальный выступ 28 формируется на наружной поверхности стенки 26 с помощью удлиненной полосы из аналогичного материала, которая приваривается или крепится к наружной поверхности стенки 26, когда она накладывается. Катушка 204 с полосой 28 установлена на крестовине 206, вращающейся вокруг оси движения стенки 26, когда она движется в осевом направлении. Таким образом, полоса укладывается в виде непрерывного спирального выступа с требуемым шагом.

Затем слой пленки 52 укладывается между выступами 28, сматываясь в рулон 208, установленный на крестовине 210 и вращающийся вокруг оси движения. Выступы 28 служат для направления пленки 52 так, что она аккуратно и равномерно укладывается на поверхность элемента 26 между выступами 28.

Как показано на фиг. 8 затем укладываются эластомерные полосы 50, сматываемые с катушки 212, смонтированной на крестовине 214, которые упираются в выступ 28, служащий для полос 50 в качестве направляющей. Небольшое натяжение прикладывается к эластомерной полосе 50, в результате чего она стягивает снаружи стенку 26. Эластомерная полоса 44 аналогично укладывается на противоположную сторону выступа 28, сматываясь с установленного на осевом удалении рулона 216, вращающегося на крестовине 218.

Полосы 46 и 48 укладываются между выступами 28 с рулона или катушки 220, вращающейся вокруг оси трубчатой конструкции с помощью крестовины 222. Как показано на фиг. 6, дополнительная полоса 224 укладывается между полосами 46, 48 для поддержания их на расстоянии друг от друга. И опять небольшое натяжение прикладывается к эластомерным полосам для удержания их в нужном положении во время формирования.

Как показано на фиг. 9, композитный материал, формирующий полосы 40, затем укладывается аналогичным образом с катушек с волокном 224, вращающихся на крестовине 226. Хотя схематично показана только одна катушка, однако будет очевидно, что волокна могут подаваться с нескольких отдельных катушек, вращающихся синхронно вокруг оси конструкции. Матричный материал может накладываться на волокно, когда оно сматывается с катушки 224 или наоборот, предварительно пропитанные волокна или термопластические совместно смешанные волокна могут использоваться в качестве матричного материала. Ранее уложенные эластомерные полосы 44, 46, 48 и 50 могут служить в качестве формы для композита 40, 42, обеспечивая его непрерывную укладку на трубчатую конструкцию перед отверждением. После нанесения, композитный материал отверждается с помощью соответствующей техники отверждения, например, воздействием инфракрасным излучением или теплом. На этом этапе внутренний слой 20 и промежуточный слой 22 закончены.

Для получения наружного слоя 24 необходимо обеспечить форму для выступа 32 композитной полосы 30. Это достигается за счет удаления полосы 224, которая была уложена между полосами 46 и 48. После удаления полосы 224 на наружной поверхности трубчатой конструкции образуется спиральная канавка, которая примет выступ 32. Затем пленка 54 укладывается на наружную поверхность трубчатой конструкции, сматываясь с катушки 228, смонтированной на крестовине 230, вращающейся вокруг оси конструкции. Это показано на фиг. 10.

Как показано на фиг. 11, затем эластомерные полосы 36, 38 укладываются на наружную поверхность, сматываясь с катушек 232, 234 соответственно, смонтированных на крестовинах 236, 238. Как показано на фиг. 10, композитные полосы 30, 34 затем наматываются на наружную поверхность между эластомерными полосами 36 и 38, аналогично полосам 40, 42. Следует отметить, что канавка, оставляемая полосой 224, расположена между витками полос 36, 38 и во время нанесения композита пленка 54 прогибается в канавку, давая возможность композиту аналогично течь в канавку и образовывать радиальный выступ 32. И снова композит эффективно формуется "на месте", благодаря ограничениям, накладываемым полосами 36, 38 и формой радиально внутренней стенки, на которую наносится композит. Затем композит отверждается и непрерывная пленка 56 накладывается на наружную поверхность для завершения внутреннего стенового элемента 14.

Таким образом, как показано на фиг. 13, наружный стеновой элемент 16 выполнен. Эластомерные полосы 66 первыми накладываются с соответствующих катушек 240, вращающихся на крестовинах 242, для формирования формы для композитных полос 64, которые накладываются со своих соответствующих катушек 244, вращающихся на крестовинах 246 (фиг. 14). Композит отверждается, и пленка 62 накладывается с рулона или катушки 248, установленной на крестовине 250. Это завершает внутренний слой 58 наружного стенового элемента 16.

Следует отметить, что композитные полосы 64 внутреннего слоя 58 наружного стенового элемента 16 укладываются в направлении, противоположном композитным полосам 30, 34, 40, 42 внутреннего стенового элемента 14. Впоследствии, как показано на фиг. 13, наружный слой 60 формируется путем наложения эластомерных полос 66 и, как показано на фиг. 16, композитных полос 64, которые затем отверждаются. Полосы 64, 66 слоя 60 накладываются в направлении, противоположном полосам 64, 66 слоя 58. После этого укладывается пленка 68 и поверх трубчатого элемента выдавливается наружная оболочка 18.

Будет очевидно, что в течение всего процесса изготовления эластомерные элементы используются в качестве формы или наложения композитных полос, в результате чего композитные полосы могут накладываться в мягкой форме, но после отверждения обеспечивают требуемую спирально намотанную конструкцию.

Будет очевидно, что другие слои могут быть выполнены аналогичным образом, используя операции, приведенные выше со ссылками на вариант, представленный на фиг. 1 и 2, но ввиду повторяющегося характера процесса полагаем нет необходимости в дальнейшем его описании.

Приготовление слоя 20 было описано путем крепления или приваривания отдельной полосы для формирования выступа 28, однако будет очевидно, что эта же конструкция может быть получена за счет использования вращающейся экструзионной матрицы 250, как показано на фиг. 17, с помощью которой выступ 28 одновременно выдавливается с цилиндрической стенкой 26, благодаря вращению матрицы, когда стенка выдавливается в осевом направлении. Это устраняет необходимость крепить или приваривать отдельную полосу к стенке 26.

Конструкция, описанная выше, обеспечивает трубчатую конструкцию, использующую композиты армированные непрерывным волокном и имеющую особенно благоприятную конструкцию и/или характеристику. Однако другим преимуществом, обнаруженным у конструкции, описанной выше со ссылками на фиг. 1-6 является ее способность обеспечивать конструктивно плотное соединение между двумя отрезками трубчатой конструкции. Раньше этого было трудно добиться с трубами из композита, армированного волокном, и не давало удовлетворительных конструкций.

Для осуществления соединения между двумя отрезками трубчатой конструкции 10, показанной выше, или одним отрезком с фиттингом, используется природа слоев, образующих конструкцию, и, в частности, наличие в ней эластомерных полос.

Как показано на фиг. 18, первый шаг при соединении двух отрезков конструкции 10 состоит в удалении части каждого слоя, которое постепенно увеличивается от радиально внутреннего слоя к радиально наружному слою, в результате чего открывается часть каждого слоя. Открытая часть будет зависеть от состава конструкции и нагрузок, которым она должна подвергаться, но обычно она в три раза больше диаметра слоя. Для удобства вся открытая часть каждого слоя не показана на чертежах.

С индивидуальными слоями, открытыми, как показано на фиг. 16 часть эластомерных элементов в каждой открытой части затем удаляется, как показано пунктирными линиями. Обычно, удаляется половина открытой эластомерной полосы, в результате чего спиральные канавки образуются между композитными полосами, формирующими каждый слой, как показано на фиг. 19.

Для установления соединения между двумя трубчатыми конструкциями два подготовленных конца, как показано на фиг. 19, выравниваются, как показано на фиг. 20 так, чтобы открытые концы внутреннего слоя 26 стыковались. Выступы 28 будут открыты на слое 26 и могут, если нужно, быть выравнены так, чтобы образовывать непрерывный спиральный выступ от одной части к другой. В этом положении для скрепления стыкующихся облицовок 26 используется термопластическое сварочное устройство.

Как показано на фиг. 21, затем вокруг упирающихся слоев 20, 22 и 24 наматывается композитный материал 260, армированный непрерывными волокнами. Несколько слоев материала наматывается на упирающиеся концы 26 и затем, как показано на фиг. 22, пластическая пленка 262 наматывается вокруг конструкции и приваривается к пленке 56. Как показано на фиг. 23, композитный материал 264 наматывается затем вокруг слоев 58 в одном направлении и (фиг. 24) вокруг слоя 60 в противоположном направлении. Как показано на фиг. 25, пластмассовая втулка 266 приваривается к слою 18 для образования непрерывного наружного покрытия. Намотанные волокна закрепляются в канавках, образовавшихся в результате удаления эластомеры, и образуют прочную механическую конструкцию, предотвращающую относительное перемещение между соседними композитными полосами. Таким образом, как отмечалось выше, обеспечивается прочное конструкционное соединение с сохранением конструктивной целостности элементов. Очевидно, требуемое число слоев будет намотано в виде волокна в зависимости от строения стены 12, но в любом случае удаление эластомерных элементов требует выполнения прочного соединения.

Описанный выше способ является, в частности, предпочтительным, когда используется с трубчатой конструкцией, представленной на фиг. 1-6. Аналогичное преимущество может быть достигнуто при использовании жесткой многослойной конструкции, имеющей несколько спирально намотанных композитных полос по крайней мере в некоторых из слоев. Затем, необходимо удалить выбранные несколько из полос для получения спиральных канавок, в которые будут уложены композитные волокна. Аналогично, соединения могут быть выполнены между трубчатой конструкцией и муфтой путем выполнения слоистой спиральной канавки на муфте для наматывания перекрывающих волокон.

Формула изобретения

1. Трубчатая конструкция, имеющая круговую стенку, образованную двумя установленными рядом стеновыми элементами, каждый из которых содержит композитные усиленные слои, отличающаяся тем, что имеет конструкцию, предназначенную для обеспечения конструкционной целостности указанной трубчатой конструкции во время изгибания с помощью распределения композитных полос в указанных соответственных элементах, указанная конструкция содержит множество близлежащих слоев в одном из указанных элементов, один из указанных слоев является непрерывным и гибким и имеет спирально намотанный радиальный выступ, направленный в сторону второго слоя, указанный второй слой включает первую спирально намотанную композитную полосу, имеющую радиальный выступ, направленный в сторону указанного первого слоя, указанный второй слой дополнительно содержит спирально намотанную эластомерную полосу, расположенную между последовательными витками композитной полосы, выступы указанного первого слоя и указанного второго слоя, ступенчато расположенные относительно друг друга в осевом направлении и перекрывающие друг друга в радиальном направлении, указанные первый и второй слои разделены промежуточным слоем, имеющим спирально намотанную композитную полосу, расположенную между каждой парой соседних выступов и закрытую с концов спирально намотанными эластомерными полосами так, чтобы расположить эластомерную полосу между композитной полосой промежуточного слоя и соседним одним из выступов, композитные полосы слоев перекрывают одна другую в осевом направлении для образования непрерывного композитного барьера в одном из указанных стенных элементов в радиальном направлении, и слой чередующихся спирально намотанных композитных полос и эластомерных полос в другом стенном элементе, причем шаг спирально намотанных композитных полос у радиально наружного из стеновых элементов больше, чем шаг композитных полос у радиально внутреннего стенового элемента, эластомерные полосы и выступы взаимодействуют для равномерного распределения композитных полос на соответствующих элементах при изгибании трубчатой структуры для поддержания ее конструкционной целостности.

2. Конструкция по п. 1, отличающаяся тем, что между наружным слоем и промежуточным слоем расположен материал, снижающий трение.

3. Композиция по п. 2, отличающаяся тем, что уменьшающий трение материал расположен между первым слоем и промежуточным слоем.

4. Конструкция по п. 2, отличающаяся тем, что уменьшающий трение материал является непрерывной пластической пленкой.

5. Конструкция по п. 3, отличающаяся тем, что уменьшающий трение материал является непрерывной пластической пленкой.

6. Конструкция по п. 1, отличающаяся тем, что второй и промежуточный слои включают вторую спирально намотанную композитную полосу, удаленную в осевом направлении от первой композитной полосы, располагающуюся между последовательными витками ее, что эластомерная полоса располагается между первой и второй композитными полосами для поддержания второй композитной полосы в радиально выравненном положении с выступами первого слоя.

7. Конструкция по п. 6, отличающаяся тем, что уменьшающий трение материал располагается между промежуточным слоем и вторым слоем.

8. Конструкция по п. 7, отличающаяся тем, что уменьшающий трение материал является пластической пленкой.

9. Конструкция по п. 6, отличающаяся тем, что уменьшающий трение материала располагается между промежуточным слоем и вторым слоем.

10. Конструкция по п. 9, отличающаяся тем, что уменьшающий трение материал является пластической пленкой.

11. Конструкция по п. 1, отличающаяся тем, что спирально намотанные композитные полосы наружного стенового элемента имеют направление, противоположное полосам другого стенового элемента.

12. Конструкция по п. 11, отличающаяся тем, что наружный стеновой элемент включает также слой из чередующихся спирально намотанных композитных полос и эластомерных полос.

13. Конструкция по п. 12, отличающаяся тем, что композитные полосы каждого слоя наружного стенового элемента имеют одинаковый шаг.

14. Конструкция по п. 13, отличающаяся тем, что композитные полосы каждого слоя второго стенового элемента имеют противоположное направление.

15. Конструкция по п.1, отличающаяся тем, что уменьшающий трение материал располагается между стеновыми элементами для облегчения относительного перемещения между ними.

16. Конструкция по п. 12, отличающаяся тем, что имеется еще один дополнительный стеновой элемент, имеющий конструкцию, анологичную конструкции первого стенового элемента, и второй стеновой элемент располагается между первым и дополнительным стеновыми элементами.

17. Конструкция по п. 16, отличающаяся тем, что полосы одного из стеновых элементов имеют одинаковый шаг и направление, противоположное направлению композитных полос дополнительного стенового элемента.

18. Способ формирования трубчатой конструкции, имеющей большое число стеновых элементов, по крайней мере один из которых включает слой, имеющий спирально намотанную полосу из композитного материала, отличающийся тем, что включает следующие этапы: выполнение цилиндрического несущего элемента радиально внутрь от слоя, формирование на слое спирально намотанной формы для разграничения противоположных сторон композитной полосы, нанесение в мягком состоянии композитной полосы между формами и отверждением композитных полос.

19. Способ по п. 18, отличающийся тем, что формами являются эластомерные элементы, расположенные между последовательными витками полос.

20. Способ по п. 19, отличающийся тем, что дополнительно включает удаление части одной из форм после отверждения полосы для получения спиральной канавки в слое, нанесение следующих спирально намотанных форм на радиально наружную поверхность слоя и на любую сторону канавки, и нанесение композитной полосы между формами и в канавку для образования еще одной спирально намотанной композитной полосы, которая перекрывается в радиальном направлении первой полосой и отделена от нее эластомерными полосами.

21. Способ формирования соединения с трубчатой конструкцией, имеющей стенку, выполненную из большого числа перекрывающих слоев, по крайней мере один из которых включает спирально намотанные дискретные элементы, отличающийся тем, что включает следующие этапы: удаление по крайней мере части стенки на одном конце конструкции, чтобы открыть слой с упомянутым элементом, удаление части элемента для получения спиральной канавки в слое на одном конце, размещение одного конца рядом с сопряженной конструкцией, с которой должно выполняться соединение, наложение между конструкциями композита так, чтобы он покрывал соединения между конструкциями, и формирование композита в спиральные канавки и отверждение композита.

22. Способ формирования композитного спирального элемента, включающий обеспечение цилиндрического несущего элемента, формирование на слое спирально намотанной формы для определения границ противоположных сторон композитного элемента, нанесение в мягком состоянии композитной полосы между формами и отверждение композитной полосы.

23. Способ по п. 22, отличающийся тем, что форма впоследствии удаляется.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11, Рисунок 12, Рисунок 13, Рисунок 14, Рисунок 15, Рисунок 16, Рисунок 17, Рисунок 18, Рисунок 19, Рисунок 20, Рисунок 21, Рисунок 22, Рисунок 23, Рисунок 24, Рисунок 25, Рисунок 26, Рисунок 27



 

Похожие патенты:

Изобретение относится к области машиностроения, в частности к элементам жесткости для ограничения изгиба гибких трубчатых элементов

Изобретение относится к области машиностроения, в частности, армированным рукавам высокого давления и может использоваться в гидросистемах машин и оборудования

Изобретение относится к производству резинотехнических изделий и может быть использовано при изготовлении гибких трубчатых изделий, например, усиленных резиновых рукавов для передачи под давлением жидкостей и газов

Изобретение относится к способам переработки политетрафторэтилена (фторопласт 4Д) и может быть использовано при изготовлении гибких трубопроводов как общего, так и специального назначения

Изобретение относится к способам переработки политетрафторэтилена (фторопласт 4Д) и может быть использовано при изготовлении гибких трубопроводов как общего, так и специального назначения

Изобретение относится к устройствам для транспортирования жидкостей и газов под высоким давлением в напорных трубопроводах и может быть использовано в трубопроводных системах судов

Изобретение относится к механике, а именно к шлангам с усиливающей арматурой, заделанной в стенку

Изобретение относится к способам сварки при изготовлении спирально-навитой трубы из термопластичного профиля в основном прямоугольного сечения и сварочным головкам для осуществления этих способов

Изобретение относится к технологии изготовления оболочек вращения из композиционных материалов методом намотки и может быть использовано в авиастроении, машиностроении и других областях техники

Группа изобретений относится к строительству и предназначена для ремонта водопропускных систем. Предложенная конструкция состоит из секций 2, каждая из которых содержит арматурный каркас 3, соответствующий поперечному сечению восстанавливаемого участка 1. На каркас 3 навиты по спирали профильная пластиковая лента 4 и профильное соединительное устройство 11. Профиль ленты 4 и соединительного устройства показан на фигурах. Для осуществления способа определяют геометрические характеристики участка 1, габариты каркаса 3, количество секций 2 в конструкции. На береговой платформе 20 осуществляют сборку каркасов 3. Соосно с участком 1 устанавливают монтажно-стыковочную платформу 21, на которой осуществляют поэтапно монтажные операции при последовательном перемещении на нее с платформы 20 каркасов 3. На каждый каркас 3 последовательно навивают по спирали ленту 4 и устройство 11, образующие с каркасом 3 секцию 2. По первому варианту конструкцию в виде трубы 19 формируют непосредственно на участке 1 от его конца к началу, для чего после подгонки каждые две секции 2 стыкуют, разъединяют, а затем посредством лебедки 22 каждую секцию 2 устанавливают в конце участка 1 и жестко соединяют. По другому варианту после подгонки секции 2 стыкуют и жестко соединяют, формируя конструкцию в виде трубы 19 непосредственно на платформе 21, и посредством лебедки 22 устанавливают на участок 1. Для каждого из вариантов объем между внутренней поверхностью участка 1 и внешней поверхностью трубы 19 заполняют полимерцементным составом. Технический результат: повышение прочности конструкции, обеспечение монолитности конструкции и восстанавливаемого участка. 3 н. и 7 з.п. ф-лы, 19 ил.

Изобретение относится к способам бестраншейного ремонта водопропускных систем. Для осуществления способа на восстанавливаемом участке 1 с внутренней его стороны крепят арматурный каркас в виде неравнополочного профиля 2. На вертикальных полках 3 профиля 2 имеются поперечные отверстия 4. Начальный спиральный виток ленты 7 совмещают с профилем 2 так, чтобы его полки 3 были сопряжены с основанием 8 ленты 7 и имели шаг, достаточный для размещения не меньше двух элементов 9 ленты 7. Отверстия 4 в профиле 2 располагают соосно с поперечными отверстиями 11 на вертикальных полках 10 элементов 9 ленты 7 для фиксации их стержневыми элементами 13. Проводят намотку второго и последующих спиральных витков. Витки соединяют профильным соединительным устройством 14, снабженным мембранным компенсатором 15 и составным основанием 16. Устройство 14 также снабжено первичными 20 и вторичными 21 замковыми элементами, имеющими возможность взаимодействия с элементами 12 ленты 7. Навивку ленты 7 и устройства 14 осуществляют намоточными машинами, при постоянной фиксации элементами 13 до получения по всей длине участка 1 пластиковой трубы 22. Объем между внутренней поверхностью участка 1 и внешней поверхностью трубы 22 заполняют полимерцементным составом. Технический результат: увеличение прочности соединения навивочных элементов между собой и крепления их к водопропускной системе. 6 ил.

Изобретение относится к способам бестраншейного ремонта водопропускных систем. Способ заключается в установке трубы 18 на изношенном участке 1 и в этапном проведении ремонтных работ. Труба 18 из пластикового материала образована при намотке по спирали профильной пластиковой ленты 6. Внутри участка 1 устанавливают анкерный каркас 2 с анкерными стойками 3, поперечным анкерным ребром 4 и продольными направляющими 5. Осуществляют подачу ленты 6 с профильным соединительным устройством 10, фиксированной в поперечном направлении ребром 4 и обеспечивающей жесткое соединение с образованием трубы 18 по длине, соответствующей длине участка 1. Затем трубу 18 разделяют на секционные участки 19, каждый из которых изолируют промежуточной стенкой 20, полученной при заливке быстротвердеющего раствора толщиной не меньше 100 мм. Устанавливают наружное обжимное кольцо 21 и вводят в каждый участок 19 заливочный материал, образующий внутреннюю изолирующую кольцевую перемычку 22, обеспечивающую монолитность соединения трубы 18 и участка 1, независимо от его формы. Толщина заливочного материала ограничена стойками 3. Готовят заливочный материал непосредственно на рабочем месте при контроле консистенции и плотности, после чего подают насосом. Технический результат: увеличение прочности соединения навивочных элементов между собой и крепления их к водопропускной системе. 5 з.п. ф-лы, 11 ил.

Шланг // 2120077

Изобретение относится к гибкому шлангу
Наверх