Способ получения оксида металла


C01G1/02 - Неорганическая химия (обработка порошков неорганических соединений для производства керамики C04B 35/00; бродильные или ферментативные способы синтеза элементов или неорганических соединений, кроме диоксида углерода, C12P 3/00; получение соединений металлов из смесей, например из руд, в качестве промежуточных соединений в металлургическом процессе при получении свободных металлов C21B,C22B; производство неметаллических элементов или неорганических соединений электролитическими способами или электрофорезом C25B)

 

Изобретение относится к химии, а именно к получению порошкообразных оксидов металлов, в частности диоксида олова, которые находят применение как компоненты керамических масс, глазурей, пигментов, а также в электротехнической промышленности. Сущность изобретения заключается в окислении металлического порошка в шахтной печи при 1000-1200oС путем подачи металлического порошка снизу вверх, смешивания с потоком воздуха в инжекторе, причем избыток кислорода составляет 20-200% от стехиометрического. Результат изобретения - получение мелкодисперсных порошков оксидов металлов, например диоксида олова, из металлических порошков, упрощение процесса, обеспечение его надежности и безопасности. 1 з.п. ф-лы.

Изобретение относится к химии, а именно к получению порошкообразных оксидов металлов, в частности диоксида олова SnO2. Такие порошки находят применение как компоненты керамических масс, глазурей, пигментов, а также в электрохимической промышленности.

Известен способ (1) получения высокодисперсного порошка диоксида олова высокой степени чистоты с высокой удельной поверхностью путем введения порошка олова в предварительно нагретый до 1700-3200oC поток кислорода, направленный вниз под углом 30-40o к вертикали с одновременной стабилизацией кольцевым газодисперсным потоком кислорода и диоксида олова с концентрацией 0,1-0,3 кг/м3. Кислород нагревается при прохождении через ВЧ-разряд, порошок олова подают транспортирующим газом - смесью кислорода и аргона. Для осуществления способа (1) требуется сложное оборудование, соблюдение мер взрыво- и пожаробезопасности, поддержание заданных параметров расхода кислорода, порошка олова и транспортирующего газа.

Наиболее близким по технической сущности к заявляемому является способ (2), описывающий получение оксидов металлов, в частности олова, путем обработки расплавленного металла газообразным или жидким кислородом или смесью кислорода с инертным газом. Поток расплавленного металла подают в реактор сверху, кислород или смесь кислорода с инертным газом подают под углом 90o к потоку расплава из одной или нескольких форсунок под давлением 0,5-10,0 МПа в стехиометрическом количестве. Таким образом, диспергированные частицы расплава окисляются, выделяя тепло, для утилизации которого реакционная зона снабжена теплообменником. Частицы оксида металла улавливают во всасывающем раструбе, расположенном в нижней части реактора, далее транспортируют потоком газа и осаждают в циклоне, а также в фильтре. Для транспортировки порошка оксида металла и обеспечения пожаробезопасности применяют смесь кислорода с инертным газом.

К недостаткам способа-прототипа можно отнести сложность работы с кислородом при достаточно высоком давлении, необходимость соблюдения мер пожаро- и взрывобезопасности из-за высокой температуры в реакционной зоне.

Заявляемый способ позволяет получить порошкообразные оксиды металлов, преимущественно олова, путем окисления металлического порошка кислородом воздуха, без применения сжатых и сжиженных газов: кислорода, аргона без применения сложных устройств для дозирования металлического порошка, что обеспечивает простоту, надежность и безопасность проведения процесса.

Поставленная задача решается следующим образом. Порошок исходного металла, например олова, подают через инжектор с потоком кислородсодержащего газа, в частности воздуха, снизу вверх в шахтную печь, причем избыток кислорода составляет 20-200% от стехиометрического. Окисление металла в оксид происходит в печи при 1000-1200oC. Полученный оксид металла в виде тонкодисперсного порошка улавливают рукавным фильтром, установленным на выходе из печи.

Отличительными от прототипа признаками заявляемого способа являются следующие: оксид металла получают путем окисления металлического порошка, а не расплава при 1000-1200oC; избыток по кислороду составляет 20-200% от стехиометрического; металлический порошок подают в печь снизу вверх; подачу металлического порошка в печь осуществляют путем смешения с потоком кислородсодержащего газа (воздуха) в инжекторе.

Пример 1. В дозатор загрузили 3,60 кг порошка олова, для его окисления включили подачу воздуха в инжектор со скоростью 65 л/мин. Распыленный в инжекторе порошок подавали в шахтную печь снизу вверх в течение 60 мин. Температура печи составляла 1100oC. Полученный диоксид олова улавливали в рукавном фильтре. На выходе получили 4,41 кг диоксида олова, выход составил 96,5% от теоретического. Избыток кислорода - 20 от стехиометрии.

Пример 2. В дозатор загрузили 3,60 кг порошка олова, для его окисления включили подачу воздуха в инжектор со скоростью 108 л/мин. Распыленный в инжекторе порошок подавали в шахтную печь снизу вверх в течение 60 мин. Температура печи составляла 1100oC. Полученный диоксид олова улавливали в рукавном фильтре. На выходе получили 4,45 диоксида олова, выход составил 97,4% от теоретического. Избыток кислорода - 100% от стехиометрии.

Пример 3. В дозатор загрузили 3,60 кг порошка олова, для его окисления включили подачу воздуха в инжектор со скоростью 162 л/мин. Распыленный в инжекторе порошок подавали в шахтную печь снизу вверх в течение 60 мин. Температура печи составляла 1200oC. Полученный диоксид олова улавливали в рукавном фильтре. На выходе получили 4,50 кг диоксида олова, выход составил 98,5% от теоретического. Избыток кислорода - 200% от стехиометрии.

Источники информации 1. Авт. св. СССР N 1696390, кл. C 01 G 9/02, 1991.

2. Заявка ФРГ N 4023278, кл. C 01 G 19/02, 1992 (прототип).

Формула изобретения

1. Способ получения оксида металла, включающий окисление диспергированных потоком кислородсодержащего газа частиц металла, отличающийся тем, что окислению подвергают порошок металла, смешанный с кислородсодержащим газом в инжекторе, который подают в шахтную печь снизу вверх, при этом процесс окисления ведут при 1000 - 1200oС и избытке кислорода, равном 20 - 200% от стехиометрического.

2. Способ по п. 1, отличающийся тем, что окислению подвергают порошок олова.



 

Похожие патенты:

Изобретение относится к технологии получения оксида олова (IV) с частицами игольчатой формы, находящего применение в качестве электропроводящего материала при изготовлении специальных видов резины , бумаги, пластиков
Изобретение относится к производству минеральных удобрений широкого ассортимента, содержащих три и более компонентов, широко используемых в сельском хозяйстве

Изобретение относится к области получения кристаллических материалов и может быть использовано в радиотехнике и электронике, использующих материалы на основе тугоплавких оксидов

Изобретение относится к металлургии цветных металлов и технологии получения неорганических хлоридов хлорированием редкоземельного сырья в среде расплавленных хлористых солей

Изобретение относится к порошковой металлургии, а именно к способам получения неорганических тугоплавких соединений методом самораспространяющегося высокотемпературного синтеза (СВС) и к устройствам для его осуществления
Изобретение относится к технологии получения особо чистых тонкодисперсных оксидов элементов, непосредственно к плазмохимическому методу синтеза простых и двойных оксидов ряда элементов, например, таких как диоксид циркония, оксид алюминия, диоксид титана, диоксид циркония, легированный оксидом иттрия и др

Изобретение относится к способам получения металлов, конкретно висмута, индия, цинка в виде солей из растворов с помощью жидкостной экстракции, и может быть использовано в гидрометаллургии или препаративной химии
Изобретение относится к технологии неорганического синтеза и может быть использовано для получения простых и комплексных сульфидов металлов

Изобретение относится к области получения сульфидов тяжелых цветных металлов и может быть использовано для получения высокоcортных сульфидных концентратов, а также в химической технологии производства неорганических веществ, в частности сульфидов цинка, обладающих пигментными свойствами
Наверх