Способ определения пористости ядерных мембран

 

Предложен способ определения ядерных мембран путем выделения и обработки сигналов, связанных с порами. Изобретение относится к области мембранных фильтров на основе ядерных трековых мембран, применяемых для очистки питьевой воды и воды для медпрепаратов, для фильтрации плазмы крови и биологических жидкостей, для фильтрации особо чистых помещений. Суть способа заключается в том, что мембрану помещают в камеру облучения и облучают пучком ускоренных на циклотроне частиц, а выделение сигналов, связанных с порами, осуществляют путем измерения энергетического спектра частиц, прошедших через поры и непосредственно через пленку мембраны, затем определяют площади энергетических пиков частиц, прошедших через поры и пленку мембраны, а по их отношению определяют пористость, исходя из выражения: где Nо - число частиц, зарегистрированных в участке энергетического спектра вблизи максимальной энергии Eо; N1 - число частиц, зарегистрированных в участке энергетического спектра вблизи минимальной энергии T1; N1 - число частиц, зарегистрированных в участке энергетического спектра в промежуточной области между Eо и E1. 2 ил.

Изобретение относится к области мембранных фильтров на основе ядерных трековых мембран, применяемых для очистки питьевой вводы и воды для медпрепаратов, для фильтрации плазмы крови и биологических жидкостей, для фильтрации воздуха особо чистых помещений (больничных операционных, промышленных помещений для производства прецизионных средств микроэлектроники, производства компакт-дисков).

Известны способы определения пористости ядерных мембран [1,2].

1. Прямой метод. Образец разрушают и оценивают объем твердой части пористого образца [2]. Пористость определяют по формуле где - общая пористость; Vтв - объем твердой части образца; Vм- объем образца мембраны в целом. Однако прямой метод является деструктивным, т.е. связан с разрушением образца. Другим недостатком прямого метода является то, что он учитывает не только открытые, но и закрытые поры, что искажает информацию.

Весовой метод [2]. Рассчитывают долю объема по формуле где Gоб - масса образца; ai и i - соответственно процентное содержание и плотность i-й составной части мембраны.

Однако указанный метод может быть применен для случаев, когда известен состав мембраны, а также содержание и плотность каждой составной части мембраны. Весовой метод дает информацию обо всех порах (он одновременно учитывает и открытые и закрытые поры) и, соответственно, искажает информацию о производительности мембран.

Метод расширения газа [2]. Образец мембраны помещают в наполненный газом сосуд, затем этот сосуд соединяют с другим, из которого газ эвакуирован. Зная первоначальное P1 и конечное P2 давления в сосуде, рассчитывают величину где V0 и - объем сосуда с образцом и без образца соответственно: P1 и P2 - начальное и конечное давления в сосуде. Однако метод расширения газа является весьма грубым, он имеет невысокую точность.

Метод пропитки [2]. Образец мембраны, предварительно взвешенный насыщают смачивающей жидкостью и проводят взвешивание повторно, после чего рассчитывают o

где
Gоб-масса образца, насыщенного жидкостью, ж - плотность жидкости.

Однако для тонких мембран и этот метод плохо пригоден из-за большой ошибки в определении пористости.

Известен также метод пропитки в сочетании с оптическим методом, когда образец мембраны приводят в соприкосновение с поверхностью равнобедренной стеклянной призмы, представляющей собой поверхность полного отражения. По мере заполнения под жидкостью растет доля площади основания призмы, на которой полное отражение нарушено. Однако метод пропитки в сочетании с оптическим методом обладает невысокой точностью определения пористости мембран.

Все рассмотренные известные способы определения пористости мембран имеют невысокую точность.

Суть предлагаемого метода заключается в проведении энергетического анализа частиц, например ионов гелия (6-8 МэВ) или ионов азота (16,2 МэВ), прошедших через ядерную трековую мембрану, сориентированную относительно пучка ионов так, что оси пор (параллельные друг другу) располагаются параллельно траектории ионов коллимированного пучка. Соотношение площадей энергетических пиков частиц, прошедших непосредственно через пленку и через поры в ней, определяет суммарную площадь пор, приходящихся на единицу поверхности, т.е. определяет пористость ядерной мембраны.

Дополнительным преимуществом предлагаемого метода определение пористости ядерных мембран является возможность определения конусности отверстий ядерных мембран, поскольку ионы, прострелившие конусообразную часть отверстий (пор) имеют промежуточную энергию.

Пример осуществления способа.

Для определения пористости ядерной трековой мембраны (толщиной 5,3 мкм) последнюю помещают в камеру облучения циклотронным пучком ионов азота, ускоренных до энергии E0=16,4 МэВ. Энергетический анализ частиц, прошедших через пленку и поры в ней, проводят с помощью полупроводникового детектора и анализатора импульсов. Ионы азота, прошедшие непосредственно через поры в ядерной мембране, не меняют своей первоначальной энергии E0, в то время как ионы, прошедшие через пленку, теряют в ней часть энергии и имеют на выходе уменьшенную энергию E'.

На фиг. 1 приведен характерный энергетический спектр ионов азота, прошедших через трековую мембрану. Участки спектра вблизи E0 и E1, соответствуют частицам, которые пролетели сквозь мембраны без столкновений и через основной слой пленки соответственно. Ионы, так или иначе прострелившие конусообразную часть отверстий (пор), имеют промежуточную энергию E1.

Пористость мембраны определяют, исходя из выражения

где
N0-число частиц, зарегистрированных в участке энергетического спектра вблизи максимальной энергии E0;
N1- число частиц, зарегистрированных в участке энергетического спектра вблизи минимальной энергии E1;
N1-число частиц, зарегистрированных в участке энергетического спектра в промежуточной области между E0 и E1.

Из спектра, показанного на фиг. 1 с помощью формулы (5) получены значения поверхностной пористости 7%.

Предлагаемый способ позволяет для мембраны толщиной t делать оценку формы и размеров конусной части пор (фиг. 2). Оценку отношения диаметров поры на поверхности пленки d1 и в цилиндрической части d0 (фиг. 2) проводят по формуле

где
N0 и N1 то же, что и в формуле (5).

Таким образом, предлагаемый метод позволяет определить с достаточной для практических применений точностью пористость мембраны.


Формула изобретения

Способ определения пористости ядерных мембран путем выделения и обработки сигналов, связанных с порами, отличающийся тем, что мембрану помещают в камеру облучения и облучают пучком ускоренных на циклотроне частиц, а выделение сигналов, связанных с порами, осуществляют путем измерения энергетического спектра частиц, прошедших через поры и непосредственно через пленку мембраны, затем определяют площади энергетических пиков частиц, прошедших через поры и пленку мембраны, а по их отношению определяют пористость, исходя из выражения

где N0 - число частиц, зарегистрированных в участке энергетического спектра вблизи максимальной энергии E0;
N1 - число частиц, зарегистрированных в участке энергетического спектра вблизи минимальной энергии E1;
N' - число частиц, зарегистрированных в участке энергетического спектра в промежуточной области между E0 и E1.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к гидрофизике почв и мелиоративному почвоведению и предназначено для определения давления входа воздуха (барботирования) почв и других пористых материалов

Изобретение относится к области исследования свойств пористых материалов, в частности к определению параметра смачиваемости поровых каналов естественных пород-коллекторов, и может быть использовано при подсчете запасов нефти и газа, а также при проектировании рациональных систем разработки нефтяных месторождений

Поромер // 2097742
Изобретение относится к анализу физико-химических свойств материалов, а именно пористой структуры и сорбционных свойств разнообразных сред, таких как катализаторы, сорбенты, мембраны, фильтры, электроды, породы, почвы, ткани, кожи, строительные материалы и др

Изобретение относится к исследованию процессов многофазной фильтрации жидкостей, в частности процессов вытеснения (например, вытеснения нефти из пористых сред вытесняющим агентом) с определением относительных фазовых проницаемостей
Изобретение относится к контролю структуры металла и может быть использовано при контроле его ползучести

Пермиметр // 2078331

Изобретение относится к технике разделения суспензий в центробежном поле и 2 позволяет повысить герметичность крепления мембраны

Изобретение относится к средствам для испытания фильтров и может найти применение в любых отраслях промышленности, где они используются

Изобретение относится к области тестирования на герметичность и может быть использовано для тестирования на герметичность фильтрованного устройства (2) для сепарации аэрозолей и пылей из объемного потока газа. Сущность: посредством загрузочного устройства (16) тестовый аэрозоль подают, если смотреть в направлении потока, до фильтрующего элемента (9) в поток неочищенного газа. Осуществляют замер числа частиц и/или определяют концентрацию частиц, если смотреть в направлении потока, в очищенном потоке газа после фильтрующего элемента (9). При этом в загрузочное устройство (16) подают первый смешанный объемный поток из тестового аэрозоля и сжатого воздуха, который формирует аэрозольный генератор (37). Произведенный при помощи аэрозольного генератора (37) первый смешанный объемный поток смешивают с объемным потоком воздуха для получения второго, более разреженного смешанного объемного потока. Подают второй, более разреженный смешанный объемный поток на загрузочное устройство (16). Технический результат: минимизация расхода сжатого воздуха. 2 н. и 10 з.п. ф-лы, 5 ил.

Изобретение относится к методу мембранного разделения, в котором фильтрующая мембрана становится прозрачной в процессе испытания и выявления разделенных веществ в сфере медицины, биологии, экологии и т.п., и настоящее изобретение также имеет отношение к прозрачной жидкости для мембраны. Способ мембранного разделения, при котором во время процесса выявления компонентов, улавливаемых фильтрующей мембраной, на фильтрующую мембрану добавляется прозрачная жидкость для мембраны, чтобы сделать фильтрующую мембрану прозрачной, при этом фильтрующая мембрана изготавливается из материала, обладающего свойствами прозрачности, таким образом, подготовленная фильтрующая мембрана является непрозрачной или полупрозрачной, а погрешность между рефракционным индексом прозрачной жидкости для мембраны и рефракционным индексом материала, из которого изготовлена фильтрующая мембрана, находится в пределах ±10%. Технический результат заключается в создании прозрачной мембраны для наблюдения и подсчета веществ. 2 н. и 15 з.п. ф-лы, 4 ил.

Изобретение относится к способу изготовления и сборки половолоконных модулей. Половолоконный фильтрующий картридж, содержащий множество кластеров полых волокон, причем каждый кластер содержит множество полых волокон, расположенных параллельно друг другу, причем каждый кластер имеет первый конец кластера и второй конец кластера, оболочку корпуса, причем указанная оболочка имеет первый конец и второй конец, причем каждый конец оболочки имеет отверстие, первую торцевую крышку оболочки, причем указанная крышка закрывает отверстие в указанном первом конце оболочки корпуса, причем указанная крышка имеет множество отверстий торцевой крышки, и вторую торцевую крышку оболочки, причем указанная крышка закрывает отверстие в указанном втором конце оболочки корпуса, причем указанная крышка имеет множество отверстий торцевой крышки, причем указанные кластеры установлены параллельно друг другу внутри указанной оболочки корпуса, причем каждый кластер имеет участок, вставленный в отверстие торцевой крышки, выполненное в указанной первой торцевой крышке оболочки корпуса и закупоренное относительно указанного отверстия посредством заливочного вещества или закрепляющего вещества, причем каждый кластер имеет второй участок, вставленный в отверстие, выполненное в указанной второй торцевой крышке оболочки корпуса и закупоренное относительно указанного отверстия посредством заливочного вещества или закрепляющего вещества, причем каждая торцевая крышка оболочки изготовлена из материала, коэффициент теплового расширения которого достаточно близок к коэффициенту теплового расширения заливочного вещества или закрепляющего вещества так, что, когда указанный картридж подвержен стерилизации паром или стерилизации в автоклаве, трещины или отверстия не возникают (a) ни в торцевой крышке оболочки или области, занимаемой заливочным веществом или закрепляющим веществом, (b) ни между крышкой и областью, занимаемой заливочным веществом или закрепляющим веществом. Заявлены также способ сборки половолоконного фильтрующего картриджа, способ предварительной обработки картриджей, а также прямоугольный модуль. Технический результат – минимизирование термоиндуцированных напряжений, а также оптимизация катриджей. 12 н. и 38 з.п. ф-лы, 25 ил.

Изобретение относится к способам контроля свойств материалов и изделий и может быть использовано в производстве бетонных и железобетонных изделий

Изобретение относится к способу и устройству для испытания целостности фильтрующих элементов в фильтрующем узле

Изобретение относится к технике моделирования фильтрации и вытеснения различных флюидов через капиллярно-пористые тела
Наверх