Система регулирования объектов, например, прокатного производства

 

Изобретение относится к области автоматического управления и регулирования и может быть использовано при построении систем регулирования объектами с несколькими управляющими и одним выходным воздействиями. Технический результат заключается в повышении точности регулирования, который достигается за счет того, что система регулирования объектов, например, прокатного производства, содержит объект регулирования, три исполнительных блока, задатчик, четыре блока задержки, два экстраполятора, первый блок вычитания, последовательно включенные первый датчик, блок сравнения, фильтр низкой частоты, обратную модель объекта без запаздывания, первый сумматор, третий экстраполятор и второй блок вычитания. Выходы первого, второго и третьего исполнительных блоков подключены соответственно к первому, второму и третьему входам объекта регулирования, первый выход которого соединен с входом первого датчика и выходом системы регулирования. Выход первого блока задержки соединен с вторым входом второго блока вычитания. Выход второго блока задержки подключен к первому входу первого блока вычитания и через третий блок задержки к третьему входу второго блока вычитания. Выход задатчика соединен с вторым входом блока сравнения, выход первого сумматора подключен к входу первого экстраполятора и через второй экстраполятор к второму входу первого блока вычитания. 1 ил.

Изобретение относится к области автоматического управления и регулирования и может быть использовано при построении систем регулирования объектами с несколькими управляющими и одним выходным воздействиями. Модель объекта регулирования представлена зависимостями (1)-(4).

где y(t) - выходное воздействие объекта в t-й момент времени; w(t) - внешнее контролируемое входное воздействие на объект; (t) - приведенное к выходу объекта возмущающее воздействие с нестационарными статистическими свойствами; xj(t) - состояние объекта в его j-й точке; uj(t) - регулирующее воздействие, прикладываемое в j-й точке объекта; - время чистого запаздывания между моментами приложения w и измерением y; - время чистого запаздывания между моментами расчета эквивалентного состояния X и измерения y; j - время чистого запаздывания между моментами измерения состояния в j-й точке и расчета x;
kj(t)- коэффициенты влияния uj на xj;
k, a0, a1, b0 - постоянные коэффициенты, определяемые для каждого конкретного объекта регулирования;
J - количество регулирующих воздействий.

Примером описанного класса объектов могут служить проходные нагревательные печи прокатного производства, многоклетьевые или одноклетьевые реверсивные прокатные станы при регулировании толщины прокатываемого металла, установки непрерывной разливки стали при регулировании температуры получаемой заготовки. В частности, при нагреве заготовок металла в нагревательных методических печах y(t) соответствует температуре заготовок на выходе из печи, w(t) - начальной температуре заготовок, x(t) - температуре заготовок в различных j-х зонах печи: методической, сварочной и томильной; uj(t) - расходу топлива по зонам печи. Прокатка металла y(t) соответствует толщине готового проката, w(t) - начальной толщине заготовки, xj(t) - температуре металла или величине давления каждой j-й клети или при каждом проходе металла, uj - величине перемещения валков.

Известны системы регулирования объектами (1)-(4), например, прокатными станами [2], где регулирующие воздействия в последующем проходе металла выбираются в зависимости от показателей состояния в предыдущем проходе металла. Недостаток этих систем -низкая точность регулирования. Наиболее близкой по технической сущности является система автоматического регулирования [1] с регулятором, содержащим два экстраполятора, два блока задержки, форсирующее звено, последовательно включенные первый блок сравнения, фильтр низкой частоты, обратную модель объекта без запаздывания, сумматор, первый экстраполятор, первый масштабирующий блок, третий блок задержки, второй блок сравнения, второй масштабирующий блок, четвертый блок задержки, блок вычитания и первое форсирующее звено, выход сумматора через последовательно включенные второй экстраполятор и первый блок задержки подключен к своему второму входу и через третий экстраполятор к второму входу второго блока сравнения, выход третьего блока задержки соединен через второй блок задержки с вторым входом блока вычитания, третий вход которого соединен с выходом третьего экстраполятора, выход первого масштабирующего блока соединен с первым выходом регулятора, выход второго масштабирующего блока подключен через второе форсирующее звено к второму выходу регулятора, выход первого форсирующего звена соединен с третьим выходом регулятора, входы первого блока сравнения соединены с входами регулятора.

При функционировании регулятора определяется с помощью блоков задержки и сумматора эквивалентное регулирующее воздействие как сумма трех регулирующих воздействий, совмещенных во времени таким образом, чтобы составляющие выходного воздействия, обусловленные этими регулирующими воздействиями, приводилось к одному временному срезу. Из сигнала об ошибке регулирования в фильтре низкой частоты выделяется полезная составляющая, которая в модели объекта без запаздывания преобразуется в корректировку эквивалентного регулирующего воздействия. В результате суммирования этой корректировки с эквивалентным регулирующим воздействием получается образцовое воздействие, которое экстраполируется на интервалы времени запаздывания в каналах регулирования. Сигнал об эквивалентном экстраполированном воздействии разделяется на отдельные три регулирующие воздействия с помощью масштабирующих блоков, блоков вычитания и блоков задержки. Недостаток этого регулятора заключается в низкой точности регулирования объекта (1) - (4) из-за того, что не учитываются в явном виде сигналы о состоянии объекта в его отдельных точках и зависимость коэффициентов влияния регулирующих воздействий на состояние в данной точке объекта от состояния объекта на предыдущей точке приложения регулирующего воздействия.

Задачей изобретения является повышение точности регулирования. Для решения этой задачи в систему автоматического регулирования с известным регулятором, содержащую объект регулирования, три исполнительных блока, задатчик, четыре блока задержки, два экстраполятора, первый блок вычитания, последовательно включенные первый датчик, блок сравнения, фильтр низкой частоты, обратную модель объекта без запаздывания, первый сумматор, третий экстраполятор и второй блок вычитания, выходы первого, второго и третьего исполнительных блоков подключены соответственно к первому, второму и третьему входам объекта регулирования, первый выход которого соединен с входом первого датчика и выходом системы регулирования, выход первого блока задержки соединен с вторым входом второго блока вычитания, выход второго блока задержки подключен к первому входу первого блока вычитания и через третий блок задержки к третьему входу второго блока вычитания, выход задатчика соединен с вторым входом блока сравнения, выход первого сумматора подключен к входу первого экстраполятора и через второй экстраполятор к второму входу первого блока вычитания, введены три датчика, второй сумматор, два масштабирующих блока, задатчик постоянного сигнала, последовательно включенные пятый датчик, третий масштабирующий блок, третий сумматор и первый блок деления, последовательно включенные четвертый масштабирующий блок, четвертый сумматор и второй блок деления, последовательно включенные пятый масштабирующий блок, пятый сумматор и третий блок деления, вход пятого датчика соединен с входом системы и четвертым входом объекта регулирования, второй, третий и четвертый выходы которого подключены соответственно к входам второго, третьего и четвертого датчиков, выход второго датчика соединен с первым входом второго сумматора, выход третьего датчика через первый блок задержки - с вторым входом второго сумматора и входом пятого масштабирующего блока, выход четвертого датчика через второй блок задержки - с входом четвертого масштабирующего блока, выход третьего блока задержки подключен к третьему входу второго сумматора, выход второго сумматора через четвертый блок задержки соединен с вторым входом первого сумматора, выходы первого, второго и третьего блоков деления соединены соответственно с входами первого, второго и третьего исполнительных блоков, выход задатчика постоянного сигнала подключен к вторым входам третьего, четвертого и пятого сумматоров, выход первого экстраполятора соединен через первый масштабирующий блок с вторым входом первого блока деления, выход первого блока вычитания соединен через второй масштабирующий блок с вторым входом второго блока деления, выход второго блока вычитания - с вторым входом третьего блока деления.

Введение в систему регулирования дополнительных блоков и связей позволяет оперативно уточнять коэффициенты влияния регулирующих воздействий на состояния объекта и тем самым повысить точность регулирования в системе.

На чертеже представлена блок - схема системы регулирования и приняты следующие обозначения: yg(t) - выходное воздействие объекта регулирования в t-й момент времени, wg(t) - внешнее контролируемое воздействие на объект регулирования, ug1(t), ug2(t), ug3(t) - первое, второе и третье регулирующие воздействия.

Система регулирования объектов, например, прокатного производства, содержит объект 1 регулирования, пятый 2 датчик, первый 3, второй 4, третий 5 исполнительные блоки, второй 6, третий 7, четвертый 8, первый 9 датчики, первый 10, второй 11 и третий 12 блоки задержки, задатчик 13 постоянного сигнала, второй сумматор 14, четвертый блок 15 задержки, первый сумматор 16, обратную модель 17 объекта без запаздывания, фильтр 18 низкой частоты, блок 19 сравнения, задатчик 20, третий блок 21 деления, пятый сумматор 22, пятый масштабирующий блок 23, второй блок 24 вычитания, третий экстраполятор 25, второй блок 26 деления, четвертый сумматор 27, четвертый 28 и второй 29 масштабирующие блоки, первый блок 30 вычитания, второй экстраполятор 31, третий масштабирующий блок 32, первый блок 33 деления, третий сумматор 34, первый масштабирующий блок 35, первый экстраполятор 36.

На чертеже представлена блок - схема системы регулирования для объекта с тремя регулирующими входами. По аналогии может быть построена система для объекта с большим числом регулирующих входов.

Функционирование системы регулирования осуществляется следующим образом. Сначала с помощью первого 10, второго 11 и третьего 12 блоков задержки, второго сумматора 14 определяется эквивалентное состояние, которое затем корректируется по фактической ошибке регулирования с использованием обратной модели 17 объекта и в результате получается образцовое эквивалентное состояние. Эта величина экстраполируется первым 36, вторым 31 и третьим 25 экстраполятором на соответствующие запаздываниям в объекте 1 регулирования интервалы времени и пересчитывается в требуемые регулирующие воздействия с учетом фактически реализованных регулирующих воздействий в предыдущих точках объекта 1 регулирования. Коэффициенты пересчета, отражающие влияние регулирующих воздействий на состояния, оперативно уточняются по данным о реализованных регулирующих воздействиях. Для этого предназначены масштабирующие блоки, блоки деления, третий 34, четвертый 27 и пятый 22 сумматоры, задатчик 13 постоянного сигнала.

При работе системы регулирования четвертым 8, третьим 7 и вторым 6 датчиками измеряются состояния объекта соответственно в первой x1(t), второй x2(t) и третьей x3(t) точках объекта 1 регулирования. Сигнал x2(t) задерживается в первом блоке 10 задержки на интервал времени (2-3) и поступает на вход второго сумматора 14. Сигнал x1(t) задерживается во втором 11 и третьем 12 блоках задержки на интервалы (1-2) и (2-3), т. е. в сумме на интервал времени (1-3), и поступает на вход второго сумматора 14, куда подается и выходной сигнал x3(t) второго датчика 6. Во втором сумматоре 14 алгебраически суммируются сигналы x1(t-(1-3)), x2(t-(2-3)) и x3(t) и получается сигнал x(t) об эквивалентном состоянии объекта 1 регулирования.


Этот сигнал задерживается на интервал 3, равный в данном случае , в четвертом блоке 15 задержки и подается на вход первого сумматора 16.

Измеренный первым датчиком 9 сигнал y(t) в блоке 19 сравнения вычитается из сигнала y*(t) о его заданном значении, поступающего с задатчика 20. Сигнал о полученной разности поступает на фильтр 18 низкой частоты, в котором подавляется высокочастотная помеха, что повышает точность дальнейшего преобразования сигнала. Выходной сигнал фильтра 18 низкой частоты пересчитывается с помощью обратной модели 17 объекта без запаздывания, в данном случае 1/k, в сигнал корректировки эквивалентного состояния x(t). В первом сумматоре 16 выходной сигнал обратной модели 17 алгебраически суммируется с выходным сигналом четвертого блока 15 задержки, в результате чего получается сигнал об образцовом эквивалентном состоянии.


где
- сглаженный фильтром 18 низкой частоты выходной сигнал блока 19 сравнения.

Образцовое эквивалентное состояние означает то эквивалентное состояние, которое должно было быть, чтобы выходное воздействие было равно его заданному значению.

Сигнал xВ(t) экстраполируется на интервал времени (1+3) первым экстраполятором 36, на (2+3) - вторым экстраполятором 31 и на 3 - третьим экстраполятором 25, например, в виде реального форсирующего звена. При этом на более длительный интервал времени экстраполируется более низкочастотная составляющая сигнала xВ(t).

Выходной сигнал xЭ1(t+1+3) первого экстраполятора 36 умножается на весовой коэффициент b1, в частности равный 1/3, в первом масштабирующем блоке 35 и подается на вход первого блока 33 деления. Выходной сигнал w(t) пятого датчика 2 о внешнем контролируемом воздействии wg(t) умножается в третьем масштабирующем блоке 32 на постоянный коэффициент a1 и суммируется в третьем сумматоре 34 с выходным сигналом a0 задатчика 13 постоянного сигнала. В первом блоке 33 деления выходной сигнал первого масштабирующего блока 35 делится на выходной сигнал третьего сумматора 34 и получается сигнал u1(t) о первом регулирующем воздействии.


Т. е. коэффициент пересчета x1 в u1 непрерывно уточняется в зависимости от w(t). Сигнал u1(t) поступает на первый исполнительный блок 3, выходное воздействие которого ug1(t) подается на первый вход объекта 1 регулирования.

Из выходного сигнала xЭ2(t+2+3) второго экстраполятора 31 в первом блоке 30 вычитания вычитается сигнал x1(t-(1-2)) о фактически полученном в момент времени (t-(1-2)) состоянии объекта 1 регулирования в первой точке. Сигнал о полученной разности умножается на весовой коэффициент b2, в частности равный 1/2, во втором масштабирующем блоке 29 и поступает на второй блок 26 деления. Сигнал x1(t-(1-2)) умножается на коэффициент a2 в четвертом масштабирующем блоке 28 и суммируется в четвертом сумматоре 27 с выходным сигналом a0 задатчика 13 постоянного сигнала. Во втором блоке 26 деления выходной сигнал второго масштабирующего блока 29 делится на выходной сигнал четвертого сумматора 27 и получается сигнал u2(t) о втором регулирующем воздействии.


Т. е. коэффициент пересчета x2 в u2 непрерывно уточняется в зависимости от сигнала x1(t-(1-2)) о фактическом состоянии объекта 1 регулирования в точке приложения первого регулирующего воздействия. Сигнал u2 поступает на второй исполнительный блок 4, выходное воздействие которого ug2(t) подается на второй вход объекта 1 регулирования.

Так же, как u2(t) рассчитывается и u3(t). Из выходного сигнала xЭ3(t+3) третьего экстраполятора 25 во втором блоке 24 вычитания вычитаются сигнал x1(t-(1-2)) с выхода третьего блока 12 задержки и сигнал x2(t-(2+3)) с выхода первого блока задержки 10. Сигнал x2(t-(2+3)) умножается на коэффициент a3 в пятом масштабирующем блоке 23 и суммируется в пятом сумматоре 22 с сигналом a0. В третьем блоке 21 деления выходной сигнал второго блока 24 вычитания делится на выходной сигнал пятого сумматора 22 и получается сигнал u3(t) о третьем регулирующем воздействии.


Сигнал u3(t) поступает на третий исполнительный блок 5, выходное воздействие которого ug3(t) подается на третий вход объекта 1 регулирования.

Применение предлагаемой системы позволяет повысить точность регулирования за счет оперативного непрерывного уточнения коэффициентов влияния регулирующих воздействий на состояния объекта регулирования. Например, как показывают результаты модельных испытаний, точность регулирования толщины прокатываемого металла увеличивается на 3-8% за счет оперативного уточнения коэффициентов влияния перемещения обжимных валков на величину давления.


Формула изобретения

Система регулирования объектов, например, прокатного производства, содержащая объект регулирования, три исполнительных блока, задатчик, четыре блока задержки, два экстраполятора, первый блок вычитания, последовательно включенные первый датчик, блок сравнения, фильтр низкой частоты, обратную модель объекта без запаздывания, первый сумматор, третий экстраполятор и второй блок вычитания, выходы первого, второго и третьего исполнительных блоков подключены соответственно к первому, второму и третьему входам объекта регулирования, первый выход которого соединен с входом первого датчика и выходом системы регулирования, выход первого блока задержки соединен с вторым входом второго блока вычитания, выход второго блока задержки подключен к первому входу первого блока вычитания и через третий блок задержки к третьему входу второго блока вычитания, выход задатчика соединен с вторым входом блока сравнения, выход первого сумматора подключен к входу первого экстраполятора и через второй экстраполятор к второму входу первого блока вычитания, отличающаяся тем, что в нее введены три датчика, второй сумматор, два масштабирующих блока, задатчик постоянного сигнала, последовательно включенные пятый датчик, третий масштабирующий блок, третий сумматор и первый блок деления, последовательно включенные четвертый масштабирующий блок, четвертый сумматор и второй блок деления, последовательно включенные пятый масштабирующий блок, пятый сумматор и третий блок деления, вход пятого датчика соединен с входом системы и четвертым входом объекта регулирования, второй, третий и четвертый выходы которого подключены соответственно к входам второго, третьего и четвертого датчиков, выход второго датчика соединен с первым входом второго сумматора, выход третьего датчика через первый блок задержки - с вторым входом сумматора и входом пятого масштабирующего блока, выход четвертого датчика через второй блок задержки - с входом четвертого масштабирующего блока, выход третьего блока задержки подключен к третьему входу второго сумматора, выход второго сумматора через четвертый блок задержки соединен с вторым входом первого сумматора, выходы первого, второго и третьего блоков деления соединены соответственно с входами первого, второго и третьего исполнительных блоков, выход задатчика постоянного сигнала подключен к вторым входам третьего, четвертого и пятого сумматоров, выход первого экстраполятора соединен через первый масштабирующий блок с вторым входом первого блока деления, выход первого блока вычитания соединен через второй масштабирующий блок с вторым входом второго блока деления, выход второго блока вычитания - с вторым входом третьего блока деления.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области регулирования и может быть использовано в каналах управления летательного аппарата, электропривода робота и при автоматизации различных технологических процессов

Изобретение относится к автоматическому регулированию астатических объектов с нелинейными корректирующими устройствами

Изобретение относится к системам автоматического управления и может быть использовано в образцах техники, работающих в условиях воздействия помех и пропадании информационных сигналов, а также в установках для научных исследований

Изобретение относится к области систем автоматического управления с использованием синусно-косинусных вращающихся трансформаторов (СКВТ) и может быть использовано при управлении угловым положением различных приборов

Изобретение относится к робототехнике и может быть использовано при создании систем управления приводом роботов

Изобретение относится к следящим системам с переменной структурой, включающей интегратор

Изобретение относится к электротехнике, автоматике, металлообработке, робототехнике и может быть использовано в силовых преобразователях линейных и угловых перемещений, электронных приборах и в других устройствах, работающих с замкнутой обратной связью

Изобретение относится к электромеханическим следящим системам, предназначено для слежения за изменением входного сигнала и может быть использовано в системах автоматического управления и регулирования

Изобретение относится к области систем автоматического управления, в частности к технике формирования управляющих сигналов в системе с люфтом

Изобретение относится к автоматике и может быть использовано в системах управления различными инерционными объектами, например, поворотными платформами, промышленными роботами, летательными аппаратами

Изобретение относится к автоматическим системам управления для магнитных измерений и исследования характеристик магнитотвердых материалов

Изобретение относится к области систем автоматического управления, в частности к технике формирования управляющих сигналов в системе с люфтом

Изобретение относится к области автоматического регулирования, а конкретно к приводам подъемных механизмов, работающих в условиях значительной неуравновешенности нагрузки, например, электрогидравлические приводы стрелового оборудования экскаваторов, кранов, подъемников и т.п

Изобретение относится к области систем автоматического управления и регулирования, в частности к технике формирования управляющих сигналов, и может найти применение в робото-, аэрокосмической технике, следящих системах

Изобретение относится к области систем автоматического управления, в частности к технике формирования управляющих сигналов в системе с люфтом

Изобретение относится к области автоматического регулирования технологических параметров

Изобретение относится к области систем автоматического управления, в частности к системам управления положением инерционных объектов, установленных на самоходном шасси
Наверх