Способ получения порошка оксида алюминия

 

В зазор между электродами в кислородсодержащей среде подают алюминиевую проволоку диаметром 0,001<d<0,035 см и пропускают импульс электрического тока плотностью 2,5107<J<8,8105/d, А/см2. Получают порошок оксида алюминия с площадью удельной поверхности 96-163 м2/г. 1 табл.

Изобретение относится к области порошковой металлургии, в частности к изготовлению порошка оксида алюминия, и может использоваться при получении катализаторов, керамических и композиционных материалов.

Известен способ получения оксида алюминия путем электрического взрыва алюминиевой проволоки в воздухе. Способ основан на джоулевом разогреве и взрывном испарении проволоки в кислородсодержащей среде при пропускании по ней импульса электрического тока.

Известен также способ получения порошка оксида алюминия путем электрического взрыва алюминиевой проволоки в воздухе, принятый за прототип, в котором введенная в проволоку джоулева энергия меньше энергии сублимации металла. Известный способ позволяет получать порошок с площадью удельной поверхности до 50 м2/г за счет горения и дополнительного диспергировании алюминиевых капель, образующихся в данном режиме.

Недостатками известного способа является следующее: 1. Полученный порошок содержит значительное количество (до 70 мас.%) крупных частиц (до 60 мкм), уменьшающих удельную поверхность. Для увеличения удельной поверхности необходимо провести операцию сепарирования порошка.

2. Получаемый порошок содержит значительное количество алюминия чистого (8 мас.% и более).

Задача изобретения - повышение площади удельной поверхности порошка оксида алюминия.

Поставленная задача решается тем, что осуществляют взрыв алюминиевой проволоки диаметром 0,001 < d < 0,035 см воздействием импульса электрического тока плотностью 2,5 107 < j < 8,8 105/d A/см2.

Способ осуществляют следующим образом: В зазор между электродами в кислородсодержащей среде подают алюминиевую проволоку диаметром 0,001 < d < 0,035 см и пропускают импульс электрического тока плотностью 2,5 107 < j 8,8 105/d, A/см2. При таких условиях осуществляется режим однородного джоулева нагрева проволоки: плотность тока ограничена снизу значением jm = 2,5 107 A/см2, меньше которого в жидком проводнике развиваются магнитогидродинамические неустройчивости перетяжечного типа и проводник разбивается перетяжками на капли; плотность тока и диаметр ограничены сверху значениями, js = 8,8 105/d A/см2 и d = 0,035 см, выше которых происходит скинирование тока; диаметр проволоки ограничен снизу значением d = 0,001 см, ниже которого проволока в жидком состоянии разбивается на капли под действием капиллярных неустойчивостей.

Полученный в условиях однородного джоулева нагрева порошок анализируют: измеряют площадь удельной поверхности методом низкотемпературной адсорбции, определяют содержание алюминия чистого химическими методами и методом рентгеновской дифракции.

В таблице приведены значения площади удельной поверхности S, содержание алюминия чистого (Al) в образцах порошка и условия их получения: диаметр проволоки d, введенная в проволоку энергия w, отнесеная к энергии сублимации металла ws, и плотность тока j.

Как видно из таблицы, предлагаемый способ позволяет получать порошок оксида алюминия с высокой площадью удельной поверхности, достигающей значений 96 - 163 м2/г. Режим однородного джоулева нагрева обеспечивает получение порошка с более узким распределением частиц по размеру, с небольшим количеством крупных частиц, что повышает площадь удельной поверхности порошка и создает условия для более полного сгорания частиц в кислородсодержащей атмосфере, в порошке содержится алюминий чистый в малом количестве (< 0,2%). При этом затраты энергии, значения величины w/ws, не возрастают.

Таким образом, получение оксида алюминия по предлагаемому способу существенно повышает площадь удельной поверхности порошка.

Источники информации, принятые во внимание: 1. F. C. Karioris, B. R. Fish. An exploding wire aerosol generator. J. of Colloid Science, V. 17, 1962, p.p. 155-161.

2. Котов Ю.А., Саматов О.М. Характеристики порошков оксида алюминия, полученных импульсным нагревом проволоки. Поверхность. Физика, химия, механика, вып. 10 - 11, 1994, с. 90 - 94.

3. Котов Ю.А., Бекетов И.В., Саматов О.М. Способ получения сферических ультрадисперсных порошков оксидов активных металлов, (патент РФ N 2033901, (22) 13.09.93 B 22 F 9/14. Опубл. 27.04.95).

Формула изобретения

Способ получения порошка оксида алюминия путем электрического взрыва алюминиевой проволоки, отличающийся тем, что осуществляют взрыв проволоки диаметром 0,001<d<0,035 см воздействием импульса электрического тока плотностью 2,5107 <J< 8,8105 /d, А/см2.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области получения порошка алюминия, который может использоваться при производстве катализаторов, адсорбентов, керамических материалов и композиционных сплавов

Изобретение относится к порошковой металлургии, а именно, к получению порошков металлов, сплавов и химических соединений металлов методом ЭВП для использования в производстве металлических, металлокерамических, керамических, композиционных материалов и др

Изобретение относится к способам диспергирования металла на плазму и жидкие частицы и к способам их направленного перемешивания
Изобретение относится к области порошковой технологии, а именно к способам получения порошкообразных соединений металлов с неметаллами, и может быть применено при получении оксидов, карбидов, нитридов металлов, используемых в качестве абразивного материала, компонентов твердых сплавов, износостойких покрытий

Изобретение относится к порошковой металлургии, в частности к способам получения дисперсных порошков металлов электрическим взрывом проводников

Изобретение относится к технологии получения ультрадисперсных порошков металлической меди, применяемой в электро технической, электронной, машиностроительной и химической промышленности

Изобретение относится к порошковой технологии, в частности к получению порошков из благородных металлов и сплавов электроэрозионным методом

Изобретение относится к области получения высокодисперсных порошков металлов и их соединений, в частности к методам получения порошков путем электрического взрыва

Изобретение относится к металлургии, а именно к получению металлических порошков

Изобретение относится к области получения высокодисперсных металлических порошков и может быть использовано при производстве сорбентов, катализаторов, биопрепаратов, в порошковой металлургии при получении низкокристаллических керамических материалов и композиционных сплавов

Изобретение относится к технологии получения металлических порошков с микрокристаллической структурой для порошковой металлургии, гальванических элементов и т.п

Изобретение относится к области порошковой металлургии и может быть использовано в производстве композиционных материалов и режущих инструментов

Изобретение относится к области порошковой металлургии и может быть использовано при производстве сорбентов, катализаторов, биопрепаратов, нанокристаллических материалов и композиционных сплавов

Изобретение относится к порошковой металлургии, а именно к получению порошков металлов, сплавов и их химических соединений методом электрического взрыва проволоки для использования в производстве металлических, металлокерамических, керамических, композиционных и др

Изобретение относится к технологии получения ультрадисперсных материалов (УДМ) при непосредственном использовании высоких давлений и температур, развивающихся при детонации конденсированных взрывчатых веществ (ВВ)

Изобретение относится к области получения ультрадисперсных порошков металлов, их оксидов, карбидов, сплавов и т.д

Изобретение относится к порошковой металлургии и может быть использовано при получении порошков оксидов металлов
Наверх