Способ переработки на глинозем низкокачественного боксита по последовательной схеме байер-спекание

 

Способ используют в производстве глинозема из низкокачественного боксита. Способ включает размол боксита на оборотном растворе, выщелачивание его, разбавление вареной пульпы необескремненным спекательным алюминатным раствором с содержанием твердого не более 13 г/л, обескремнивание алюминатного раствора, сгущение и промывку красного шлама, декомпозицию алюминатного раствора с получением гидроксида алюминия и оборотного раствора, спекание красного шлама с известняком и содой, выщелачивание шламового спека с получением алюминатного раствора и спекового шлама. Изобретение позволяет упростить процесс путем сокращения передела обескремнивания. 2 з.п.ф-лы.

Изобретение относится к производству глинозема по последовательной схеме Байер-спекание.

Известен способ производства глинозема по указанной схеме, в которой шламовый спек выщелачивают, полученный алюминатный раствор с содержанием твердого 15-25 г/л направляют на обескремнивание, после чего отделяют белый шлам, а алюминатный раствор подвергают контрольной фильтрации [1]. В ветви Байера, в особенности, при переработке низкомодульного бокситового сырья, бывают осложнения со сгущением и промывкой шлама, обескремниванием алюминатного раствора.

Известен способ переработки бокситового сырья по схеме Байер-спекание [2] , в котором для упрощения технологической схемы бокситовый спек выщелачивается на промводе Байера и весь поток спековой пульпы направляется на промывку красного шлама ветви Байера. Недостатком указанного способа является: вторичные потери Al2O3 и Na2O за счет доразложения в промывной системе Байера двухкальциевого силиката; необходимость использования в спекательной ветви высокомодульных бокситов; увеличение зарастаемости отстойной аппаратуры, в особенности, при подаче на спекание низкокачественного боксита.

Известен способ безавтоклавного обескремнивания алюминатных растворов путем введения добавки алюмосиликата натрия [3], отличающийся тем, что, с целью упрощения и интенсификации процесса, алюмосиликат натрия применяют в смеси с двукальциевым силикатом и железистым гидрогранатом.

Указанный способ имеет следующие недостатки.

Для обескремнивания используется неосветленный алюминатный раствор с большим количеством твердого (спекового шлама), создавая паразитический оборот на спекание.

Добавка спекательного алюминатного раствора с более низкой концентрацией к байеровскому, разбавляя последний, увеличит потоки в ветви Байера.

При такой дозировке твердого содержащийся в растворе двухкальциевый силикат будет разлагаться, обусловив наличие вторичных потерь Al2O3 и создав этим условия для увеличения зарастаемости отстойной аппаратуры.

В качестве прототипа принимается способ переработки на глинозем низкокачественного боксита по последовательной схеме Байер-спекание, включающий размол боксита, выщелачивание его, разбавление вареной пульпы, ее сгущение с получением алюминатного раствора и красного шлама, промывку красного шлама, декомпозицию алюминатного раствора с получением гидроксида алюминия и оборотного раствора, спекание красного шлама с содой и известняком, выщелачивание шламового спека с получением алюминатного раствора, направляемого после обескремнивания на совместную декомпозицию с алюминатным раствором ветви Байера и спекового шлама [4].

Прототип наряду с положительными сторонами имеет ряд недостатков.

Существует специальный отдельный передел обескремнивания спекательного алюминатного раствора.

При переработке в ветви Байера низкокачественного боксита происходят осложнения с обескремниванием алюминатного раствора, сгущением красного шлама и т.д.

Смешивание перед декомпозицией алюминатных растворов различных концентраций усложняет условия стабилизации режима на этом переделе.

Предлагаемый способ переработки низкокачественных бокситов по последовательной схеме Байер-спекание лишен указанных недостатков.

Техническая задача изобретения состоит в упрощении технологической схемы путем сокращения передела обескремнивания алюминатного раствора спекания, интенсифицировании процесса сгущения и промывки красного шлама ветви Байера и обескремнивании алюминатного раствора этой ветви. Кроме этого, по предлагаемой технологии в ветви Байера уменьшается зарастаемость отстойной аппаратуры и улучшаются показатели по фильтрации красного шлама.

По предлагаемому способу необескремненный спекательный алюминатный раствор после выщелачивания спека с содержанием твердого не более 13 г/л подается на разбавление вареной пульпы ветви Байера, и далее идет процесс совместного обескремнивания алюминатных растворов.

Предлагаемый способ (основной вариант) заключается в следующем.

Боксит и оборотный раствор подаются в шаровую мельницу, в пульпу мельницы добавляется недостающее количество оборотного раствора, и она направляется на гидроциклон. Пески гидроциклона возвращают в мельницу.

Слив гидроциклона - готовая сырая пульпа после небольшой выдержки поступает на выщелачивание в мешалки при атмосферном давлении или в автоклавы под давлением.

Вареная пульпа подвергается разбавлению спекательным алюминатным раствором, содержащим не более 13 г/л твердого и первой промводой от промывки красного шлама.

Разбавленная вареная пульпа обескремнивается при температуре 98oC в течение 2-3 ч и подается на сгуститель.

Слив сгустителя (алюминатный раствор с кремневым модулем 400-450 единиц) после контрольной фильтрации поступает на декомпозицию.

Полученный гидроксид алюминия после промывки направляется на кальцинацию.

Маточный раствор в основном идет на выпарку. Небольшая его часть направляется на подщелачивание при выщелачивании спека. На выпарке получают два продукта: оборотный раствор, направляемый на размол боксита и оборотную соду, поступающую на репульпацию отфильтрованного красного шлама.

Шлам сгустителя подвергается 3-4-кратной промывке. Из последнего промывателя он поступает на фильтрацию на дисковых фильтрах. Фильтрат идет в промывную систему.

Отфильтрованный красный шлам репульпируется раствором оборотной соды, в него добавляется и кальцинированная сода. На полученной шламо- содовой пульпе осуществляется размол известняка (в случае необходимости добавляется уголь).

Готовая шихта поршневыми насосами подается на спекание во вращающиеся печи.

Спек после охлаждения дробится до - 8 мм и выщелачивается на первой промводе с подщелачиванием маточным раствором в трубчатом выщелачивателе на первой стадии.

Слив трубчатого выщелачивателя (алюминатный раствор спекания) с содержанием твердого не более 13 г/л поступает в ветвь Байера на разбавление вареной пульпы. (Не исключено применение для гидрохимической переработки спека и другой технологии, например, размол спека в мельницах на первой стадии, требования к алюминатному раствору остаются неизменными).

Шлам трубчатого выщелачивателя направляется в стержневую мельницу, пульпа мельницы репульпируется промводой и поступает на противоточную промывку в систему гидроциклонов и сгустителей.

Крупная фракция промывается в репульпаторах, мелкая - в сгустителях. Слив 1-ой стадии для промывки подается в трубчатый аппарат.

Промытый спекательный шлам - объединенная мелкая и крупные фракции направляются на шламовое поле.

Таким образом достигается высокий кремневый модуль алюминатного раствора на уровне 400- 450 единиц.

За счет наличия затравки более хорошо откристаллизованных частиц спекательного шлама и, видимо, каталитического их воздействия или снятия поверхностного заряда с образующегося из разбавленной вареной пульпы гидроалюмосиликата натрия образуется красный шлам с хорошо откристаллизованной твердой фазой, что интенсифицирует процесс сгущения красного шлама и последующую фильтрацию его. Наличие хорошо откристаллизованной твердой фазы и обуславливает улучшение процесса обескремнивания алюминатного раствора.

Классификация твердого в необескремненном алюминатном растворе (твердое-спековый шлам) перед подачей его на разбавление вареной пульпы обеспечивает ввод в процесс наиболее активной части шлама, недоразложенного двухкальциевого силиката, гидрогранатов кальция, что интенсифицирует процесс обескремнивания.

Пример. Необескремненный алюминатный раствор спекательной ветви после выщелачивания кускового спека, содержащий не более 13 г/л твердого, полученного непосредственно или путем классификации, поступает на разбавление вареной пульпы ветви Байера и далее при атмосферном давлении идет процесс совместного обескремнивания алюминатных растворов. При температуре 100oC и продолжительности 3 ч получают кремневый модуль алюминатного раствора 400-450 единиц.

В способе, принятом за прототип, кремневый модуль алюминатного раствора в байеровской ветви находится в пределах 300 единиц.

Формула изобретения

1. Способ переработки на глинозем низкокачественного боксита по последовательной схеме Байер-спекание, включающий размол боксита на оборотном растворе, выщелачивание его, разбавление вареной пульпы, сгущение и промывку красного шлама, декомпозицию алюминатного раствора с получением гидроксида алюминия и оборотного раствора, спекание красного шлама с содой и известняком, выщелачивание шламового спека с получением алюминатного раствора и спекового шлама, отличающийся тем, что неосветленный алюминатный раствор после выщелачивания шламового спека берут с концентрацией твердого не более 13 г/л и направляют его на разбавление вареной пульпы ветви Байера, затем обескремнивание алюминатного раствора ведут с добавкой неосветленного алюминатного раствора спектральной ветви и после промывки красный шлам подвергают фильтрации.

2. Способ по п.1, отличающийся тем, что классификацию твердого в алюминатном растворе после выщелачивания спека проводят путем сгущения его на мутный слив.

3. Способ по п.1, отличающийся тем, что классификацию после выщелачивания спека проводят путем гидроциклонирования.



 

Похожие патенты:

Изобретение относится к области цветной металлургии и может быть использовано при получении гидроксида алюминия, редкометального концентрата и цеолита

Изобретение относится к области получения глинозема из природных щелочных алюмосиликатов, в частности к получению шихты для спекания из нефелина и известняка
Изобретение относится к цветной металлургии

Изобретение относится к способам переработки бокситов и может быть использовано в производстве глинозема по параллельной схеме Байер-спекание

Изобретение относится к цветной металлургии, в частности к технологии производства глинозема

Изобретение относится к металлургии легких и редких металлов и может быть использовано на предприятиях по производству глинозема

Изобретение относится к цветной металлургии, в частности к управлению процессом получения алюминиевого раствора из алюмосодержащего спека при производстве глинозема из нефелина по безотходной технологии

Изобретение относится к тепло- и массообмену и может быть использовано в глиноземном производстве для автоклавного выщелачивания боксита

Изобретение относится к производству глинозема и может быть использовано в сфере автоклавного выщелачивания боксита

Изобретение относится к области тепломассообмена и может быть использовано в глиноземном производстве

Изобретение относится к области цветной металлургии и может быть использовано при получении гидроксида алюминия, редкометального концентрата и цеолита

Изобретение относится к области тепломассообмена и может быть использовано в глиноземном производстве
Наверх