Способ изготовления электрода первичного элемента

 

Использование: производство первичных элементов. Сущность изобретения: способ изготовления электрода первичного элемента включает смешение фторуглеродной массы, связующего и электропроводной добавки в сухом виде, после чего проводят дополнительное перемешивание компонентов электродной массы в процессе пластического течения при кручении под определенным давлением. Полученная смесь соединяется с токоотводом. Предлагаемый способ уменьшает длительность процесса изготовления и повышает качество. 1 ил.

Изобретение относится к электротехнической промышленности и может быть использовано при производстве первичных элементов.

Известен способ изготовления фторуглеродных электродов первичных элементов, который заключается во фторировании углеграфитовой ткани (например "Урал-21") с последующим прижимом к токоотводу [1]. Недостатком этого способа является высокая стоимость ткани, ее низкая механическая прочность и низкая электрохимическая активность электродов при разряде большим токами.

Наиболее близким по технической сущности и достигаемому результату является способ изготовления фторуглеродного электрода первичного элемента, включающий следующие операции: фторирование углеродной массы, смешение с электропроводной добавкой (типа ацетиленовой сажи) и связующим (водная эмульсия фторопласта), сушку катодной массы и напрессовку на токоотвод [2]. К недостаткам данного способа можно отнести большую длительность, сложность технологии, а также присутствие в порах электрода небольшого количества воды. В связи с тем что фторуглеродные электроды используются в элементах с неводным электролитом, наличие воды приводит к коррозии анода и снижению энергетических характеристик элемента в целом. Целью настоящего изобретения является уменьшение длительности процесса изготовления электрода и повышения его качества, т.е. повышение эффективности.

Поставленная цель достигается тем, что в способе изготовления электрода первичного элемента, заключающемся в том, что проводят смешение фторуглеродной массы со связующим и электропроводной добавкой и последующее соединение с токоотводом, отличающемся тем, что смешение фторуглеродной массы, связующего и электропроводной добавки производят в сухом виде, после чего проводят дополнительное перемешивание компонентов электродной массы в процессе пластического течения при кручении под давлением не менее 2 т/см2 и величине относительной деформации не менее 30.

Данное предложение удовлетворяет критерию изобретения "существенное отличие", т. к. заявителю неизвестна указанная совокупность признаков в их взаимосвязи, создающих положительный эффект.

Способ осуществляется следующим образом. Фторированный углерод насыпается в керамическую чашку, куда добавляются электропроводная добавка (сажа) и связующее - сухой фторопласт. Затем стеклянной палочкой они предварительно слегка перемешиваются в сухом виде в течение 10-15 с. Полученная масса насыпается на наковальню, прижимается сверху пуансоном и помещается под пресс. Затем она подвергается относительной деформации величиной не менее 30 при давлении не менее 2 т/см2. Полученная масса соединяется с токоотводом.

Схематически это представлено на чертеже.

Аппаратура, на которой проводилось дополнительное перемешивание, позволяет подвергать исследуемые вещества одновременному воздействию одноосного сжатия и сдвиговым напряжениям, величина которых не превышает предела текучести материала при данном давлении. Особенностью аппаратуры данного типа является то, что по мере увеличения давления напряжение, необходимое для поддержания постоянной скорости пластического деформирования, увеличивается. При постоянном давлении напряжение, необходимое для удержания постоянной скорости пластического деформирования, остается постоянным. Пластическое течение на аппаратуре данного типа реализуется в том случае, когда сила поверхностного трения больше или равна пределу текучести обрабатываемого материала. Такое соотношение возникает при давлениях порядка 2000 кг/см2, при меньших давлениях сжимающие вещества наковальня и пуансон проскальзывают по поверхности вещества и исходные порошкообразные материалы так и остаются в виде порошка. При давлениях выше 2 т/см2 порошкообразные материалы компактируются, т. е. составляющие части подвергаются пластическому деформированию. Данная аппаратура позволяет развивать в исследуемых материалах при давлении выше пороговых пластические деформации от нескольких % до десятков тысяч % без нарушения сплошности образцов.

В нашем случае величина пластической деформации относится не к единичным частицам, из которых состоит смесь, а ко всему образцу, который представляет собой цилиндр. Для данной схемы воздействия и геометрии образцов необходимо применять представления о деформациях кручения при воздействии скручивающих напряжений на цилиндрическое тело. Это отношение длины винтовой линии, в которую при деформировании трансформируется образующая цилиндра, к начальной высоте цилиндра [3]. При относительной деформации менее 30 единиц получается недостаточное равномерное перемешивание компонентов, что приводит у ухудшению электрохимических характеристик фроуглеродных катодов. Такими образом, выход вышеописанных параметров за указанные пределы приводит к снижению эффективности способа.

Реализация указанного способа позволяет увеличить емкость электродов в 1,4 - 1,7 раза за счет снижения содержания связующего (с 7-8 до 1-2%), содержание следов воды (до 110-2, равномерности распределения компонентов, а также значительно сокращает длительность процесса изготовления электрода.

Для осуществления способа необходимы пресс, пуансон и наковальня.

Пример 1. 200 мг электродной массы с содержанием фторуглерода, сажи и фторопласта в соотношении 90:8:2 мас.% перемешивались в сухом виде, после чего подвергались дополнительному перемешиванию при кручении в процессе пластического течения при давлении 5 г/см2 и относительной деформации 36, после чего соединялись с токоотводами. После сборки элементы Li-(CFx)n в типоразмере BR-2016 при нагрузке 500 Ом отдавали емкость 108 мАч.

Пример 2. 100 мг электродной массы с содержанием фтороуглерода сажи и фторопласта в соотношении 87:9:4 перемешивались в сухом виде, затем подвергались дополнительному перемешиванию при кручении под давлением 2 т/см2 и относительной деформации 42; полученная масса соединялась с токоотводом. После сборки элемента Li-(CFx)n в типоразмере BR-2016 при нагрузке 500 Ом отдавали емкость 103 мАч.

Пример 3. 400 мг электродной массы с соотношением вышеуказанных компонентов 85:10:5 перемешивалось в сухом виде, а затем подвергались дополнительному перемешиванию при кручении под давлением 8 т/см2 и относительной деформации 30, затем полученная масса соединялась с токоотводом. После сборки элементы Li(CFx)n в типоразмере BR-2016 при нагрузке 500 Ом отдавали емкость 93 мАч.

Во всех трех случаях контрольные партии удовлетворяли требованиям ГОСТ по емкости (60 мАч) и разрядному напряжению (не ниже 2,5 В) при разнице на нагрузке 500 Ом.

Преимущества предлагаемого способа заключаются в том, что он позволяет снизить продолжительность процесса изготовления электрода и увеличить его емкость.

Таким образом повышается эффективность настоящего способа в целом, чем он выгодно отличается от известных.

Формула изобретения

Способ изготовления электрода первичного элемента, в котором производят смешение фторуглеродной массы со связующим и электропроводной добавкой и последующее соединение с токоотводом, отличающийся тем, что смешение фторуглеродной массы, связующего и электропроводной добавки производят в сухом виде, после чего проводят дополнительное перемешивание компонентов электродной массы в процессе пластического течения при кручении под давлением не менее 2 т/см2 и величине относительной деформации не менее 30.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области химических источников тока (ХИТ), а более конкретно - к углеродсодержащему материалу для электродов ХИТ и способу изготовления из него пористых электродов

Изобретение относится к химическим источникам тока с анодами из металлического лития и электролитами на органических растворителях, которые должны обладать надежной герметичностью, гарантирующей длительную сохранность и устойчивую эксплуатацию

Изобретение относится к электротехнической промышленности и может быть использовано в химических источниках тока, в частности в высокоэнергоемких перезаряжаемых химических источниках тока с литиевым анодом и органическим электролитом

Изобретение относится к изготовлению химических источников тока, конкретно к способам изготовления отрицательных электродов анодов на основе щелочного металла лития

Изобретение относится к электротехнической промышленности, в частности, к производству пуговичных литиевых элементов с номинальным напряжением 1,5 B
Изобретение относится к электротехнической промышленности, в частности к производству литиевых источников тока с органическим электролитом
Изобретение относится к электротехнике и может быть использовано при производстве химических источников тока с литиевым анодом

Изобретение относится к химическим источникам тока (ХИТ) с литиевым анодом и электролитом на основе апротонных органических растворителей и может быть использовано для автономного питания электронных устройств, часов, микрокалькуляторов, кинофотоаппаратуры и др

Изобретение относится к электротехнике, в частности к химическим источникам тока (ХИТ) системы диоксид марганца-литий

Изобретение относится к созданию новых энергонасыщенных неорганических углеродсодержащих катодных материалов на основе соединений фторированного углерода, используемых в химических источниках тока (ХИТ), преимущественно в трехвольтовых ХИТ системы "фторуглерод-литий" с повышенными разрядными характеристиками
Изобретение относится к электрохимии, а именно к способу изготовления химических источников тока
Изобретение относится к области электротехники и может быть использовано для создания топливных элементов, для разложения кислородосодержащих газов для получения кислорода, разложения воды для получения водорода и т.д

Изобретение относится к области электротехники и может быть использовано в топливных элементах
Изобретение относится к электротехнической промышленности и может быть использовано в первичных химических источниках тока с литиевыми отрицательными электродами в апротонным электролитом

Изобретение относится к электротехнической промышленности и может быть использовано при производстве химических источников тока
Наверх