Аппарат для разложения щелочных отходов, полученных при очистке нефтяных фракций аммиачной водой

 

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано в производстве нефтепродуктов. Разложение щелочного отхода проводится в горизонтальном цилиндрическом аппарате с теплообменными элементами, приваренными к корпусу с наружной стороны. Жидкий поток внутри аппарата секционирован полностью с помощью поперечных перегородок с отводами. Использование наружных тепло-обменных элементов позволяет значительно упростить конструкцию, повысить надежность аппарата и обеспечить практически полное разложение щелочного отхода. 1 ил., 1 табл.

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано в производстве нефтепродуктов.

В работе разложение щелочных отходов, полученных при очистке топливных фракций нефти аммиачной водой, осуществляется в пустотелом сосуде с продувкой воздухом или водяным паром при 100oC в течение 17 ч. Длительность процесса разложения щелочных отходов и значительный расход тепла для полной отгонки воды делает невозможным использование данного устройства в промышленности. (Маркин А.А., Герман А.Л., Тер-Ионесян А.Н., Круговой процесс выщелачивания нефтяных дистиллятов, АНХ, 1940, N 9, с. 29 - 32).

В работах предлагают разложить щелочной отход в горизонтальном цилиндрическом испарителе с трубным пучком, установленным внутри аппарата, который является прототипом предлагаемого аппарата. Этот аппарат имеет ряд недостатков: во-первых, его конструкция и изготовление сложны; во-вторых, жидкий поток полностью не секционирован из-за наличия трубного пучка, в результате чего время пребывания отдельных порций потока в зоне разложения будет различным, что приведет к неполному разложению щелочного отхода; в-третьих, надежность аппарата недостаточно высока (Нефть и газ, 1983, N 4, с. 25 - 27; Кастильо Хакес Хосе Дель Кармен. Автореферат диссертационной работы "Разработка процессов выщелачивания дизельного топлива с регенерацией реагента". Баку, 1989, с. 28).

Задачей предлагаемого устройства является упрощение конструкции и изготовление аппарата, повышение его надежности и обеспечение практически полного разложения щелочного отхода.

Поставленная задача достигается тем, что разложение щелочного отхода проводится в горизонтальном цилиндрическом аппарате с теплообменными элементами, при котором теплообменные элементы приварены к корпусу с наружной стороны, жидкий поток секционирован полностью с помощью поперечных перегородок с отводами, причем высоты перегородок уменьшаются по ходу движения потока.

Новизна изобретения состоит в использовании наружных теплообменных элементов и в установлении внутри аппарата поперечных перегородок с отводами, высоты которых уменьшаются по ходу движения потока.

Использование наружных теплообменных элементов позволяет значительно упростить конструкцию и полностью секционировать жидкий поток, чего нельзя добиться при размещении внутри аппарата трубного пучка. Надежность предлагаемого аппарата несравненно выше чем у прототипа, так как наружные теплообменные элементы приварены к корпусу, взамен разъемного трубного пучка, состоящего из многочисленных труб с возможными нарушениями герметичности в фланцевых соединениях, креплениях труб к решетке, а также появлениями течи в самых трубах. К тому же предлагаемый аппарат прост в изготовлении.

Эскиз аппарата показан на чертеже.

Аппарат состоит из корпуса 1, горловины 2, крышки 3, теплообменных элементов 5, поперечных перегородок 4 с отводами 6, штуцеров различного назначения: вход щелочного отхода 7, выход парогазовой смеси 8, выход жидкой смеси 9, вход теплоносителя 10, выход теплоносителя 11, дренажи 12, труб 13.

Поток с одной секции в другую переходит с помощью отводов, приваренных к перегородкам. В качестве отводов могут быть использованы трубы, полутрубы, различные профильные прокаты. Верхние концы отводов расположены горизонтально по перифериям перегородки чуть ниже уровня ее верхнего края, а нижние концы, объединяясь, сообщаются с отверстием в перегородке, через которое поток поступает в нижнюю часть следующей секции. Таким образом поток в каждой секции разложения движется снизу вверх, что позволяет обеспечить примерно одинаковое время пребывания отдельных порций щелочного отхода в рабочей зоне и практически полное разложение его.

Сбор жидкости с краев поверхности и подача ее в нижнюю часть следующей секции исключает наличие мертвых зон и удлиняет путь потока.

Разность высот соседних перегородок (или разность уровней жидкости в соседних секциях) определяется расчетом в зависимости от физических свойств потока и его составляющих и должна обеспечить движение жидкости по отводам. Кроме того, уменьшение высот перегородок по ходу движения потока исключает обратное перемешивание в рабочей зоне.

Наружные приварные теплообменные элементы могут иметь различные конструкции. Показанные на чертеже приварные элементы имеют формы неполных поясов и охватывают больше половины наружной поверхности аппарата. Теплоноситель подается в среднюю часть теплообменного элемента с одной стороны и переходит в соседний теплообменный элемент с середины другой стороны с помощью труб. Соединение нагревательных элементов, расположенных на днищах и на цилиндрической поверхности, осуществляется трубами, чтобы не покрыть сварной шов, соединяющий цилиндр с днищами. В качестве теплоносителя могут быть использованы различные чистые потоки.

Аппарат работает следующим образом.

Нагретый до заданной температуры щелочной отход в газопарожидкостном состоянии поступает в аппарат снизу по штуцеру 7. Парогазовая смесь, полученная в результате разложения водного раствора аммонийных солей нефтяных кислот, пройдя через горловину, выходит из аппарата по штуцеру 8, а двухфазная жидкая смесь вода - нефтяная кислота отводится по штуцеру 9. Определенный уровень в зоне удаления жидкой смеси поддерживается с помощью выступающей во внутрь части трубы. Условие разложения щелочного отхода в аппарате обеспечивается регулированием расхода теплоносителя, подаваемого в теплообменные элементы по штуцеру 11. На каждой секции предусмотрены дренажные штуцеры 12.

Преимущество предложенного аппарата по сравнению с прототипом очевидно: во-первых, использование наружных теплообменных элементов позволяет значительно упростить конструкцию и изготовление аппарата и повысить его надежность; во-вторых, жидкий поток полностью секционирован, в результате чего обеспечивается оптимальное время пребывания потока в зоне разложения, т.е. практически полное разложение щелочного отхода.

Пример: Регенератор имеет диаметр D = 300 мм и длину L = 500 мм и снабжен наружным обогревом. Жидкий поток с помощь перегородок разделен на три секции. В аппарат непрерывно подается щелочной отход, полученный при очистке дизельного топлива аммиачной водой, нагретый до 120oC с потенциальным содержанием нефтяных кислот 24,85 мас.%. Полученные в результате разложения щелочного отхода парогазовая смесь конденсируется в холодильнике и собирается в сборнике, а двухфазную жидкость разделяют на водную фазу и нефтяные кислоты в отдельном разделителе. При разложении происходит частичное обезмасливание кислот, т. е. неомыляемые отгоняются вместе с парогазовой смесью и отделяются в сборнике, и водная фаза, полученная в разделителе, вместе составляют водную фазу.

В таблице представлены результаты разложения щелочного отхода в секционированном регенераторе с наружным обогревом.

Эти данные показывают, что предложенное устройство аппарата обеспечивает высокую степень разложения водного раствора аммонийных солей нефтяных кислот.

Формула изобретения

Аппарат для разложения щелочных отходов, полученных при очистке нефтяных фракций аммиачной водой, состоящий из горизонтального цилиндрического корпуса и теплообменных элементов, отличающийся тем, что теплообменные элементы расположены с наружной стороны корпуса, а в рабочем объеме установлены поперечные перегородки с отводами, причем высоты перегородок уменьшаются по ходу движения потока.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к области машиностроения, энергетики, химии и нефтехимии, конкретно, к области получения щелочных многокомпонентных сплавов, в частности, , используемых в качестве щелочного реагента при регенерации смазочных масел

Изобретение относится к способам демеркаптанизации сухих и сжиженных углеводородных газов, бензиновых фракций, легких нефтей и газоконденсатов и может быть использовано в газовой, нефтеперерабатывающей, нефтедобывающей и нефтехимической отраслях промышленности

Изобретение относится к нефтепереработке, а именно к способу переработки кислых гудронов
Изобретение относится к очистке легких углеводородных фракций без применения водорода и может быть использовано в нефтеперерабатывающей, нефтехимической и других отраслях промышленности

Изобретение относится к области очистки углеводородов от сернистых соединений и может быть использовано в нефтяной, газовой и нефтехимической отраслях промышленности. Изобретение касается способа очистки легкого углеводородного сырья от карбонилсульфида путем его разложения в углеводороде щелочным реагентом с последующим отделением насыщенного сульфидными соединениями щелочного реагента и его окислительной регенерацией обработкой кислородом воздуха в присутствии катализатора окисления сернистых соединений. В качестве щелочного реагента используют промотор, содержащий водный раствор щелочи (NaOH, KOH) и водорастворимые полярные органические соединения, образующиеся при обработке продуктов взаимодействия щелочи с кислыми примесями углеводородных фракций кислородом воздуха в присутствии катализатора на полимерной основе. Окислительную регенерацию щелочного реагента, насыщенного сернистыми соединениями, ведут обработкой кислородом воздуха при температуре 30-80°С и давлении до 3,0 МПа в присутствии катализаторов на полимерном носителе, при этом указанный щелочной реагент (промотор) имеет общую щелочность не менее 5 мас.% и содержание водорастворимых полярных соединений и кислых примесей в нем составляет не менее 1,7 мас.%. Технический результат - повышение степени очистки сжиженных углеводородных газов, в частности пропан-пропиленовой фракции, от карбонилсульфида (COS). 2 табл.

Изобретение относится к области химической технологии очистки углеводородного газа от сероводорода и может быть использовано в нефтегазовой, химической и нефтеперерабатывающей промышленности. Изобретение касается способа очистки от сероводорода газов разложения с установки атмосферно-вакуумной или вакуумной перегонки нефти, включающий сжигание в печи газов разложения, образующихся от нагрева мазута. Газы разложения из вакуумсоздающей системы многоступенчатого пароэжекторного типа после конденсатора холодильника и (или) первой ступени эжектирования и (или) других ступеней эжектирования поступают в барометрическую емкость и далее в абсорбер, в который на орошение контактных устройств подают регенерированный абсорбент, при этом в абсорбере поддерживают давление 1,01-1,05 кгс/см2, после абсорбции насыщенный абсорбент с содержанием сероводорода 0,1-5,0% масс. выводят из абсорбера на регенерацию, которую проводят либо в пределах установки, либо на установках облагораживания или очистки от примесей прямогонных дистиллятов или иных продуктов, очищенные газы разложения из абсорбера поступают на сжигание в печь нагрева мазута перед вакуумной колонной. Технический результат - очистка от сероводорода газов разложения. 2 з.п. ф-лы, 4 ил., 2 табл.

Изобретение относится к области очистки сырья и продуктов нефтеперерабатывающих и нефтехимических производств и может быть использовано для очистки легких углеводородных фракций от серосодержащих соединений. Изобретение касается способа очистки углеводородных фракций от серосодержащих соединений, в котором углеводородные фракции очищают путем их смешения с аммиачной водой, разделяют сепарацией полученную смесь на очищенные углеводородные фракции и отработанную аммиачную воду, которую регенерируют, после чего подают ее на очистку углеводородных фракций. Регенерацию отработанной аммиачной воды осуществляют путем ее очистки от серосодержащих соединений, ректификации с получением очищенной сточной воды и газообразного выходного продукта, направляемого в скруббер, получения в скруббере очищенного газообразного аммиака, который подвергают абсорбции очищенной сточной водой в емкости для абсорбции аммиака с получением регенерированной аммиачной воды. Технический результат - повышение экологической безопасности процесса очистки углеводородных фракций, простота и надежность утилизации отработанной аммиачной воды. 2 ил.

Изобретение раскрывает установку для переработки кислых гудронов, которая содержит емкость для сырья, трубопроводы, насосы, средство для нагрева гудрона, реактор, емкость с нейтрализатором и сепаратор, при этом она дополнительно содержит датчик расхода и анализа pH и сокинг-камеру, а емкость для сырья соединена трубопроводом, снабженным насосом, со средством для нагрева гудрона в виде теплообменника, выход которого соединен с реактором с мешалкой через трубопровод, в котором установлен датчик расхода и анализа рН, выход датчика соединен с регулятором расхода, установленным в трубопроводе, соединяющем емкость с нейтрализатором с реактором в виде кавитацонного смесителя, выход реактора соединен со входом в сокинг-камеру, выход которой соединен посредством трубопровода, снабженного насосом, с сепаратором, выполненным в виде трехфазной центрифуги. Технический результат заключается в получении кислых гудронов, пригодных для использования в качестве сырья для производства битума и нефтяного топлива. 1 ил.

Изобретение раскрывает установку нейтрализации кислых гудронов, которая содержит емкость для сырья, трубопроводы, насосы, средство для нагрева гудрона, реактор, емкость с нейтрализатором и дегидратор, при этом она дополнительно содержит датчик расхода и анализа pH и сокинг-камеру, а емкость для сырья соединена трубопроводом, снабженным насосом со средством для нагрева гудрона в виде теплообменника, выход которого соединен в свою очередь с реактором в виде кавитатора через трубопровод, снабженный датчиком расхода и анализа рН, выход которого соединен с регулятором расхода, установленным в трубопроводе, соединяющем емкость с нейтрализатором с кавитатором, выход которого соединен с входом в сокинг-камеру, а ее выход соединен с трубопроводом, снабженным насосом, с входом дегидратора внутри которого размещен змеевик для подачи пара. Полученные после переработки нефтепродукты используют как сырье для производства битума и нефтяного топлива. 1 ил.

Изобретение относится к способу щелочной демеркаптанизации углеводородного сырья с последующей окислительно-каталитической регенерацией насыщенного меркаптидами щелочного агента либо непосредственным окислением содержащихся в углеводородном сырье меркаптанов кислородом воздуха в присутствии щелочного агента и гетерогенного катализатора окисления сернистых соединений. Способ характеризуется тем, что в качестве щелочного агента используют водный раствор щелочи, содержащий полярные органические соединения, образующиеся за счет глубокого окисления меркаптидов при обработке меркаптидсодержащего щелочного раствора кислородом воздуха в присутствии высокоактивного гетерогенного катализатора КСМ-Х на полимерном носителе. Высокая активность применяемого катализатора КСМ-Х в процессе окислительной регенерации меркаптидсодержащего щелочного раствора и эффективность получаемого при этом щелочного агента за счет содержащихся в нем водорастворимых полярных кислородсодержащих продуктов окисления меркаптидов позволяют упростить технологию осуществления процесса демеркаптанизации углеводородов, существенно уменьшить размеры технологического оборудования, а также сократить величину капитальных и эксплуатационных затрат на его реализацию по сравнению с известными способами. 2 табл., 2 пр.
Наверх