Композиция для получения покрытий анодным электроосаждением

 

Изобретение относится к области получения покрытий методом электроосаждения, в частности к нанесению покрытий водоразбавляемыми лакокрасочными пигментированными композициями, и может быть использовано в автомобильной и химической промышленностях, различных отраслях машино- и приборостроения, электро-и радиотехнике. Композиция для получения покрытий анодным электроосаждением содержит пленкообразователь - малеинизированный цис-полибутадиеновый каучук (лак КЧ-0125), красный железоокисный пигмент, нейтрализатор - 25%-ный водный раствор аммиака и воду при следующем содержании компонентов (мас. %): малеинизированный цис-полибутадиеновый каучук (лак КЧ-0125) 16,30-17,66, красный железоокисный пигмент 1,25-2,03, 25%-ный водный раствор аммиака 1,10-1,19, вода остальное. Использование предложенной композиции позволяет получать покрытия с высокими противокоррозионными свойствами: солестойкость в 3%-ном растворе NaCl составляет 26-45 сут, водостойкость, не менее 1200-1300 ч, бензо- и маслостойкость - не менее 60-72 ч. 2 табл.

Изобретение относится к области получения покрытий методом электроосаждения, в частности к нанесению покрытий водоразбавляемыми лакокрасочными пигментированными композициями, и может быть использовано в автомобильной и химической промышленностях, различных отраслях машино- и приборостроения, электро- и радиотехнике.

Известна композиция для получения покрытий анодным электроосаждением, содержащая пленкообразователь - смолу резидрол ВА-133 (продукт малеинизации сополимера льняного и дегидратированного касторового масла, модифицированный канифолью), пигменты (двуокись титана, железооксидный /железоокисный/ пигмент, сажу), наполнитель (алюмосиликат), нейтрализатор (триэтиламин) и воду (Крылова И. А. , Котлярский Л.Б., Стуль Т.Г. Электроосаждение как метод получения лакокрасочных покрытий. - М.: Химия, 1974, с. 56) [1].

Готовят композицию введением триэтиламина в половину расчетного количества дистиллированной или деионизированной воды при постоянном перемешивании, а затем небольшими порциями добавляют грунтовку ФЛ-093 (В-КФ-093). После этого доливают оставшееся количество воды до достижения массовой доли сухого остатка в ванне 14-16%. Приготовленная композиция перемешивается не менее 8 ч и фильтруется через капроновое сито (Грунтовка В-КФ-093, ТУ 6-21-0204564-28-29) [2].

Композицию наносят методом анодного электроосаждения на предварительно обезжиренную фосфатированную поверхность при напряжении 150-320 В и времени осаждения 90-120 с. Полученные покрытия подвергают термообработке при 180oC в течение 30 мин. Отвержденные покрытия имеют следующие противокоррозионные характеристики: стойкость к статическому воздействию воды составляет не менее 1000 ч, к воздействию солевого тумана (5%-ный раствор NaCl) не менее 150 ч (6 сут), а стойкость к бензину - не менее 48 ч [2].

Недостатком указанной композиции является низкая коррозионная стойкость покрытий на основе грунтовки В-КФ-093. Кроме того, многокомпонентность композиции и необходимость фильтрования ее раствора удорожает процесс приготовления композиции, а использование лишь фосфатированной поверхности изделий требует дополнительной технологической операции.

Известна композиция для получения покрытий анодным электроосаждением, содержащая пленкообразователь - смолу ВПФДКЭ-53 (ВЭП-0179) (пентафталевый олигомер на основе касторового и дегидратированного касторового масла, модифицированный эпоксидным олигомером), пигменты, наполнители, нейтрализатор - триэтаноламин и воду. В зависимости от получаемого цвета композиция может содержать один или несколько пигментов - двуокись титана, пигмент голубой фталоцианиновый 2 "зу"', пигмент ярко-зеленый фталоцианиновый, пигмент синий гелиогеновый NГВ, пигмент зеленый гелиогеновый GNA, сажу ДГ-100 и принтекс "U", пигмент красный железооксидный 130 ВМ, пигмент ярко-красный 2С, пигмент желтый прочный перманент HR. В качестве наполнителей используют каолин ЛКС и алюмосиликатный пигмент ASP-600.

Готовят композицию на основе эмали ВЭП-2100 путем перемешивания пигментов и наполнителей в среде смолы ВЭП-0179 с последующим диспергированием в бисерной мельнице. Затем полученную однородную массу нейтрализуют триэтаноламином и разбавляют дистиллированной водой до достижения массовой доли сухого остатка 101%. Композицию на основе эмали ВЭП-2100 фильтруют через 2-3 слоя марли. Нанесение покрытий производят через 24 ч после приготовления раствора (Эмаль ВЭП-2100, ТУ 6-10-1502-79) [3].

Композицию на основе эмали ВЭП-2100 наносят методом анодного электроосаждения на предварительно обезжиренные фосфатированные и нефосфатированные стальные поверхности при напряжении 100-250 В и продолжительности осаждения 90-120 с [3]. Режим отверждения покрытий: 155oC в течение 30 мин. Покрытия на основе эмали ВЭП-2100 имеют следующие противокоррозионные свойства: водостойкость составляет 30 сут, а стойкость к действию солевого тумана (3% раствор NaCl) - 25 сут [1, стр. 59]. Нами показано, что аналогичный результат (т. е. 25 сут) получен при статическом воздействии 3%-ого раствора хлористого натрия.

Недостатком указанной композиции является недостаточно высокая коррозионная стойкость покрытий на ее основе. Кроме того, многокомпонентность композиции и ее фильтрование усложняет и удорожает процесс приготовления композиции.

Наиболее близкой к изобретению по технической сущности является композиция для получения покрытий анодным электроосаждением (Кузьмичев В.И., Абрамян Р. К. , Чагин М.П. Водорастворимые пленкообразователи и лакокрасочные материалы на их основе. - М.: Химия, 1986) [4]. Композиция состоит из пленкообразователя - малеинизированного, цис-полибутадиенового каучука (лака КЧ-0125), пигментов (двуокиси титана, технического углерода, хромата стронция, силикохромата свинца), наполнителей (каолина, микроталька), нейтрализатора (25%-ного водного раствора аммиака) и воды при следующей массовой доле компонентов (в%): Лак КЧ-0125 - 16,15-18,31 Диоксид титана - 2,16- 2,45 Технический углерод - 0,10-0,12 Хромат стронция - 0,35- 0,40 Силикохромат свинца - 0,21-0,24 Каолин - 0,92-1,04 Микротальк - 0,92-1,04 25%-ный водный раствор аммиака - 0,74-1,17 Вода - Остальное
Композицию получают из грунтовки ВКЧ-0207 [4, с. 92], содержащей следующие ингредиенты (массовая доля, %):
Лак КЧ-0125 - 77,6
Диоксид титана - 10,4
Технический углерод - 0,5
Хромат стронция - 1,7
Силикохромат свинца - 1,0
Каолин - 4,4
Микротальк - 4,4
Для получения композиции вышеуказанного состава грунтовку ВКЧ-0207 нейтрализуют 25%-ным водным раствором аммиака из расчета на 100 г грунтовки (4,51,0) г аммиака и затем добавляют медленно и небольшими порциями дистиллированную воду до достижения массовой доли сухого остатка в ванне 15-17% (Грунтовка ВКЧ-0207, ТУ 6-10-1654-83) [5]. Композиция непрерывно перемешивается в течение не менее 24 ч механической лопастной мешалкой. При необходимости перемешивание доводят до 72 ч. После этого раствор через капроновое сито заливают в ванну [5].

Композицию на основе грунтовки ВКЧ-0207 наносят методом анодного электроосаждения на предварительно обезжиренные фосфатированные поверхности при напряжении 120-210 В и продолжительности осаждения 90- 180 с. Полученные покрытия подвергают термообработке при 180oC в течение 30 мин. Покрытия на основе грунтовки ВКЧ-0207 характеризуются следующими противокоррозионными свойствами: стойкость покрытия в камере солевого тумана (5% раствор NaCl) - не менее 275 ч (11 сут), водостойкость - 1000 ч, стойкость к статическому воздействию бензина и минерального масла - не менее 48 ч [5].

Согласно нашим данным, коррозионная стойкость покрытий, полученных из композиции на основе грунтовки ВКЧ-0207, в 3% растворе хлористого натрия составляет 14 сут.

Таким образом, основным недостатком известной композиции является недостаточно высокая коррозионная стойкость покрытий, причем не только по отношению к воде и раствору хлористого натрия, но и по отношению к бензину и минеральному маслу. Так как известная композиция характеризуется многокомпонентностью и высоким общим содержанием пигментов и наполнителей (массовая доля 4,66-5,29%), то это, как мы полагаем, приводит к снижению коррозионной стойкости за счет разрыхления структуры покрытий.

Кроме того, сложный состав композиции, а также необходимость ее фильтрования усложняет и удорожает процесс приготовления композиции. Использование токсичных пигментов (хромата стронция и силикохромата свинца) снижает экологическую безопасность композиции на основе грунтовки ВКЧ-0207, а нанесение покрытий только на фосфатированную поверхность требует дополнительной технологической операции.

Задачей изобретения является разработка композиции для получения покрытий анодным электроосаждением, ингредиентный состав которой обеспечил бы повышенную коррозионную стойкость (водо-, соле-, бензо- и маслостойкость) покрытий при удешевлении и упрощение получения композиций и технологического процесса нанесения покрытий.

Достигается технический результат использованием только двух основных компонентов композиции: пленкообразователя - малеинизированного цис-полибутадиенового каучука (лака КЧ-0125) и пигмента - красного железоокисного пигмента.

Для решения поставленной задачи предложена композиция для получения покрытий анодным электроосаждением, включающая пленкообразователь - малеинизированный цис-полибутадиеновый каучук (лак КЧ-0125), оксид металла, нейтрализатор - 25%-ный водный раствор аммиака и воду, которая, согласно изобретению, в качестве оксида металла содержит красный железоокисный пигмент, и компоненты берут при следующей массовой доле (в%):
Малеинизированный цис-полибутадиеновый каучук (лак КЧ-0125) - 16,30-17,66
Красный железоокисный пигмент - 1,25- 2,03
25%-ный водный раствор аммиака - 1,10-1,19
Вода - Остальное
Наличие в композиции только двух основных компонентов - пленкообразователя и пигмента позволяет легко скорректировать соотношение их скоростей осаждения в ванне.

Установлено, что количественный состав предложенной композиции обеспечивает постоянное соотношение пленкообразователя и пигмента в ванне электроосаждения и в покрытии. В связи с этим, как мы полагаем, при получении покрытий из предлагаемой композиции происходит хемосорбционное взаимодействие между лаком КЧ-0125, содержащим карбоксильные группы, и пигментом основного характера - оксидом железа, что приводит к значительному повышению коррозионной стойкости покрытий на их основе.

Таким образом, показано, что сочетание двух известных компонентов - пленкообразователя лака КЧ-0125 и красного железоокисного пигмента приводит к неожиданному результату - резкому повышению качества покрытий на их основе. Так, в табл. 1 представлены данные по коррозионной стойкости в 3%-ном растворе хлористого натрия покрытий, полученных из композиций на основе различных пленкообразователей и красного железоокисного пигмента.

Как видно из данных табл. 1, такие известные пленкообразователи для электроосаждения как смола резидрол ВА-133 [1] и лак-ВЭП-0179 [3] в сочетании с красным железоокисным пигментом обеспечивают невысокие коррозионные свойства композиционных покрытий (6 и 7 сут соответственно). И только сочетание лака КЧ-0125 и красного железоокисного пигмента резко повышает коррозионную стойкость покрытий до 45 сут 3%-ном растворе хлористого натрия.

Таким образом, совокупность существенных признаков предложенной композиции является необходимой и достаточной для достижения обеспечиваемого изобретением технического результата - высокой коррозионной стойкости покрытий на ее основе.

Следует отметить, что минимальное количество компонентов в композиции и относительно небольшое содержание пигмента обеспечивает упрощение и удешевление приготовления композиции и получения покрытий на ее основе. Отсутствие токсичных пигментов повышает экологическую безопасность предложенной композиции, а нанесение покрытий на нефосфатированную поверхность не требует дополнительной технологической операции.

Характеристика используемых веществ.

В качестве малеинизированного цис-полибутадиенового каучука (лака КЧ-0125) берут продукт малеинизации низкомолекулярного цис-полибутадиенового каучука СКДН-Н с добавкой фенолформальдегидной смолы ФЛ-0142. Выпускается в виде раствора в диацетоновом, изопропиловом или этиловом спирте. Содержание нелетучих веществ составляет 641% [4, с.78].

Красный железоокисный пигмент (ТУ 6-10-602-86) представляет собой оксид железа Fe2O3 (массовая доля не менее 93,5%). Порошок красного цвета. Нами был использован пигмент марки "K", предназначенный для лакокрасочных материалов.

Аммиак водный ГОСТ 3760-79
Вода дистиллированная ГОСТ 6709-72
Методика определения коррозионной стойкости
Водо-, соле-, бензо- и маслостойкость покрытий определяют методом погружения, при котором образцы выдерживают в жидкости в течение заданного времени (ГОСТ 9.403-80, метод A).

Для определения водостойкости образцы подвергаются статическому воздействию дистиллированной воды, солестойкости - 3% раствора хлористого натрия, бензостойкости - бензина АИ-93, маслостойкости - минерального масла.

Композицию готовят путем перемешивания пигмента с пленкообразователем с последующей нейтрализацией и разбавлением водой. Покрытия из композиции наносят методом анодного электроосаждения в режиме заданного напряжения при U = 80- 160 В, = 1,5 - 3,0 мин. Термообработку покрытий осуществляют при T = 180 - 185oC в течение 301 мин.

Пример конкретного выполнения.

Для приготовления композиции красный железоокисный пигмент измельчают, например, в агатовой ступке. Берут 4,1 г растертого пигмента и 40,8 г лака КЧ-0125 и тщательно перемешивают до получения однородной массы. Далее смесь нейтрализуют 2,9 г 25% водного раствора аммиака. Затем приливают при постоянном перемешивании дистиллированную воду в два приема. Сначала вливают 75-100 г воды, а затем остальную воду до достижения общей массы композиции 250 г. Приготовленная композиция имеет следующий состав (мас.доля компонентов в %):
Лак КЧ-0125 - 16,32
Красный железоокисный пигмент - 1,64
25%-ный водный раствор аммиака - 1,16
Вода 80,88
Полученную композицию заливают в ванну электроосаждения. Стальную пластину подготавливают традиционным для электроосаждения методом: обезжириванием, например, в растворе моющего средства, с последующим протравливанием, например, в растворе соляной кислоты с уротропином. Потом пластину тщательно промывают сначала водопроводной, а затем - дистиллированной водой. Подготовленный образец служит в качестве анода в ванне электроосаждения. Электроосаждение проводят при напряжении 100 В в течение 3 мин. Пластину с покрытием промывают сначала водопроводной, затем дистиллированной водой, обдувают горячим воздухом до исчезновения капель и подвергают термоотверждению при температуре 180oC в течение 30 мин. Полученное покрытие имеет следующие антикоррозионные характеристики (табл.2, пример 4): водостойкость - не менее 1300 ч, солестойкость в 3% растворе NaCl - 45 сут, бензо- и маслостойкость - не менее 72 ч.

Аналогично примеру конкретного выполнения были получены композиции, содержащие компоненты в заявляемом диапазоне, а также композиции с запредельным содержанием ингредиентов (табл. 2).

Установлено, что заявляемый количественный состав композиции выбран из условий, обеспечивающих получение покрытий с высокими противокоррозионными свойствами (табл. 2, примеры 1 -7).

При электроосаждении из композиций с запредельными содержаниями пигмента (примеры 8 и 9) получают покрытия с пониженной коррозионной стойкостью: так, например, их солестойкость составляет 21 и 22 сут соответственно, водостойкость - не менее 1100 ч бензо- и маслостойкость - не менее 48 ч. При запредельном снижении содержания пигмента (пример 8) полученное покрытие обладает недостаточно изолирующими свойствами, следовательно, и антикоррозионными свойствами. При запредельном повышении содержания пигмента (пример 9) из-за недостатка пленкообразователя нарушается сплошность покрытия, что также снижает коррозионную стойкость покрытия.

При электроосаждении из композиции с запредельными значениями содержания пленкообразователя (примеры 10 и 11) также получают покрытия с пониженной коррозионной стойкостью: так, например, их солестойкость составляет 21 и 22 сут соответственно, водостойкость - не менее 1100 ч, бензо- и маслостойкость - не менее 48 ч. При содержании пленкообразователя ниже заявляемого предела (пример 10), т.е. в условиях недостаточного его количества в композиции, при формировании покрытия нарушается его сплошность, что и обусловливает низкую коррозионную стойкость. Верхний предел содержания пленкообразователя ограничен тем, что при увеличении его содержания в композиции образуется необратимый осадок в виде смолы (пример 11).

Заявляемое количество нейтрализатора обеспечивает стабильность композиции, что способствует получению качественных покрытий. При содержании нейтрализатора ниже заявляемого предела часть смолы остается в виде нерастворимого осадка, что не позволяет получать покрытия. Верхний предел содержания нейтрализатора ограничен тем, что при его избытке протекают процессы омыления, которые также не позволяют получать покрытия.

Преимущества предложенной композиции по сравнению с известной состоят в следующем.

1. Количественный и качественный состав предложенной композиции обеспечивает получение покрытий с высокими антикоррозионными свойствами: солестойкость в 3%-ном растворе NaCl составляет 26-45 сут, водостойкость - не менее 1200-1300 ч, бензо- и маслостойкость - не менее 60-72 ч. По сравнению с прототипом солестойкость покрытий повышается в 1,85 - 2,7 раза, водостойкость - в 1,1- 1,3 раза, масло- и бензостойкость - в 1,25- 1,5 раза, а по сравнению с лучшим техническим решением (аналог 2) - солестойкость возрастает в 1,1-1,8 раза, водостойкость - в 1,6-1,8 раза.

2. Минимальное количество компонентов в композиции и относительно небольшое содержание пигмента обеспечивает упрощение и удешевление приготовления композиции и получения покрытий на ее основе.

3. Предлагаемая композиция позволяет наносить покрытия на нефосфатированные поверхности, что упрощает и удешевляет процесс получения покрытий.

4. Отсутствие токсичных компонентов (пигментов) повышает экологическую безопасность предложенной композиции.

Достоинством предложенной композиции является ее стабильность и пригодность для электроосаждения в течение более одного месяца. Кроме того, установленное постоянное соотношение пигмента и пленкообразователя в ванне и в покрытии существенно упрощает корректировку композиции во время проведения технологического процесса получения покрытий.


Формула изобретения

Композиция для получения покрытий анодным электроосаждением, включающая пленкообразователь - малеинизированный цис-полибутадиеновый каучук (лак КЧ-0125), оксид металла, нейтрализатор - 25%-ный водный раствор аммиака и воду, отличающаяся тем, что в качестве оксида металла она содержит красный железоокисный пигмент и компоненты берут при следующей массовой доле, (%):
Малеинизированный цис-полибутадиеновый каучук (лак КЧ-0125) - 16,30 - 17,66
Красный железоокисный пигмент - 1,25 - 2,03
25%-ный водный раствор аммиака - 1,10 - 1,19
Вода - Остальноее

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к нанесению полимерных покрытий способом электрофореза и может быть применено в машиностроении, в частности при изготовлении подшипников качения

Изобретение относится к технике нанесения покрытий способом электрофореза, в частности к способам нанесения полимерных покрытий на металлические поверхности, и может найти применение для защитной или декоративной окраски металлических изделий любой конфигурации

Изобретение относится к способам получения полимерных покрытий методом электроосаждения и может быть использовано в лакокрасочной промышленности Изобретение позволяет улучшить технологичность , снизить коэффициент трения, повысить гидрофобность

Изобретение относится к способам получения полимерных покрытий и может быть использовано, например, в машинои приборостроении и электротехнике

Изобретение относится к способам получения защитно-декоративных лакокрасочных покрытий, в частности, на металлические фосфатированные и пассивированные поверхности, и может быть использовано при окраске узлов и деталей сельскохозяйственных машин

Изобретение относится к технике получения лакокрасочных покрытий способом электроосаждения и может найти широкое применение в автомобильной, электротехнической и других отраслях промышленности.Цель изобретенияповышение качества покрытия путем улучшения качества разделения фильтрующей среды

Изобретение относится к способу получения высокопрочного пленочного материала, используемого в радио- и электротехнике, а также в качестве полимерной мембраны для химической промышленности

Изобретение относится к смоляной композиции для краски для катионного электроосаждения с высокой внутренней проницаемостью и может применяться в качестве грунтовочного слоя
Изобретение относится к композиции с высокой рассеивающей способностью, она предназначена для получения на катоде покрытий методом электроосаждения
Изобретение относится к области гальванотехники и может быть использовано для нанесения коррозионно-стойких покрытий из материалов, не содержащих хрома. Способ включает: (a) нанесение щелочного очистителя на по меньшей мере часть подложки, (b) промывку по меньшей мере части подложки, прошедшей стадию (a), водой, (c) нанесение кислотного очистителя на по меньшей мере часть подложки после щелочной очистки, (d) промывку по меньшей мере части подложки, прошедшей стадию (c), водой; и (е) нанесение покрытия, химически взаимодействующего с подложкой, включающего цирконий, на по меньшей мере часть подложки, очищенной кислотой, причем по меньшей мере один из материалов, используемых на стадиях (c) и (е), по существу не содержит хром, (f) промывку по меньшей мере части подложки, прошедшей стадию (е), водой и (g) нанесение электроосаждаемой композиции покрытия на по меньшей мере часть покрытия, химически взаимодействующего с подложкой, причем электроосаждаемая композиция покрытия включает ингибитор коррозии, содержащий азольные соединения, которые включают бензотриазол, 3-меркапто-1,2,4-триазол, 2-меркаптобензотиазол, 2,5-димеркапто-1,3,4-тиадиазол, 1-метилбензотриазол или их комбинации. Изобретение также относится к подложке, такой как алюминиевая подложка, на которую нанесено покрытие с использованием вышеуказанного способа. 4 н. и 9 з.п. ф-лы, 2 пр.
Изобретение относится к получению электроизоляционных лаков для покрытия металлических основ, например медных проводов, пазов статоров и якорей электродвигателей, проводников печатных плат и т.д. Способ нанесения электроизоляционного покрытия на металлическую подложку включает приготовление электрофоретического состава на основе лака ПЭ-939 марки В, для чего его смешивают с 1% нашатырным спиртом, этилцеллозольвом и диоксаном, затем в приготовленный электрофоретический состав погружают два электрода на расстоянии 10-30 мм, один из которых является электродом-изделием, а другой вспомогательным электродом, подают на упомянутый электрод-изделие положительный потенциал относительно второго вспомогательного электрода и при плотности тока 2-10 мА/см2, в течение 10-20 с, электроосаждают на изделие плотный равномерный электрофоретический осадок пленкообразующего, затем электрод-изделие извлекают из лака, помещают в термошкаф, создают в термошкафу разряжение 50-60 торр и температуру 30-40°C, выдерживают электрод-изделие при такой температуре 20-40 с, затем извлекают упомянутый электрод-изделие из термошкафа и помещают его в печь, внутри которой создают температуру 350-450°C и выдерживают электрод-изделие в течение 60-90 с, после чего электрод-изделие извлекают из печи. Изобретение обеспечивает повышение качества и эксплуатационной надежности изоляционного покрытия: удельное объемное сопротивление, устойчивость к химическим реагентам, эластичность, электрическую и механическую прочность.
Изобретение относится к нанесению покрытия на электропроводящую подложку. На различные части подложки одновременно наносят несколько электропроводящих жидких материалов. По меньшей мере один из электропроводящих жидких материалов содержит ионное соединение. Приложение электрического тока к по меньшей мере одному из жидких материалов осуществляют с обеспечением нанесения на подложку ионного соединения. Достигается требуемая коррозионная стойкость подложек за счет нанесения покрытия по всей их поверхности. 3 н. и 17 з.п. ф-лы, 9 пр.

Изобретение относится к композиции для окрашивания катионным электроосаждением. Композиция содержит катионную эпоксидную смолу (А), модифицированную амином, блокированный изоцианатный отверждающий агент (В), гидрофобный агент (С), который является несшитой акриловой смолой, модификатор вязкости (D), являющийся частицами сшитой смолы со средним диаметром частицы от 50 до 200 нм, и нейтрализующую кислоту в водной среде. При этом массовое соотношение содержания (А)/(В) составляет от 60/40 до 80/20, величина параметра растворимости (SP) гидрофобного агента (С) составляет 10,2 или более и менее чем 10,6 и меньше на 0,6-1,0 величины параметра растворимости (SP) катионной эпоксидной смолы (А), содержание гидрофобного агента (С) составляет 0,2-5 мас.% по отношению к общему количеству катионной эпоксидной смолы (А) и блокированного полиизоцианатного отверждающего агента (В). Содержание модификатора вязкости (D) составляет от 3 до 10 мас.% по отношению к общему количеству катионной эпоксидной смолы (А), блокированного полиизоцианатного отверждающего агента (В) и гидрофобного агента (С). Кулоновская эффективность композиции для окрашивания электроосаждением составляет от 2,0 до 2,5 мг/(мкм·Кл). Также заявлен способ получения покрывной пленки электроосаждением указанной композиции, где скорость повышения напряжения при окрашивании составляет 30-70 В/10 с. Изобретение обеспечивает высокое качество осаждаемой покрывной пленки, а также устойчивость к ржавлению даже на участках зазоров окрашиваемых изделий. 2 н. и 6 з.п. ф-лы, 6 табл., 18 пр.

Изобретение относится к способам получения защитных антикоррозионных покрытий на алюминии, титане, их сплавах и сплавах магния и может найти применение для защиты изделий и конструкций, контактирующих со средой, содержащей коррозионно-активные ионы, в частности, в химическом производстве, в пищевой промышленности, в условиях морского климата. Способ включает плазменно-электролитическое оксидирование (ПЭО) металлической поверхности в электролите, содержащем растворимые соли органических и неорганических кислот, с получением слоя оксидной керамики и последующее нанесение политетрафторэтилена (ПТФЭ) с термической обработкой полученного покрытия, при этом ПЭО осуществляют в биполярном режиме, ПТФЭ наносят с помощью электрофореза из его водной дисперсии, дополнительно содержащей додецилсульфат натрия и ОП-10 при следующем содержании компонентов, г/л: ПТФЭ с размером частиц, не превышающим 1 мкм 10-30, додецилсульфат натрия 0,1-2,0, ОП-10 0,1-2,0, а также изопропиловый спирт в количестве 5-100 мл/л и воду - остальное, при напряжении 40-300 В в течение 25-75 с, а термообработку осуществляют при температуре 300-310 °C в течение 10-15 минут. Технический результат - улучшение качества наносимых покрытий, повышение их износо- и коррозионной стойкости при одновременном упрощении способа и расширении круга обрабатываемых металлов. 3 з.п. ф-лы, 6 пр., 2 ил., 1 табл.

Изобретение относится к вариантам улучшенного способа получения 1,5,7-триазабицикло-[4.4.0]-дец-5-ена. Соединение используется для композиции электроосаждаемого покрытия и для изготовления подложки с покрытием путем электрофоретического осаждения на подложку указанной композиции. Способ получения включает стадии (a) формирования смеси, содержащей дизамещенный карбодиимид, дипропилентриамин, а также растворитель на основе простого эфира и/или спирта; и (b) нагревание указанной смеси при температуре от 160°С до 240°С для обеспечения условий взаимодействия упомянутого дизамещенного карбодиимида с упомянутым дипропилентриамином. При необходимости проводят стадию (c), на которой отгоняют побочный продукт из реакционной смеси стадии (b), при этом стадия (с) и стадия (b) являются одновременными. Преимущественно стадию а) осуществляют в спирте, например 2-бутоксиэтаноле, монобутиловом эфире диэтиленгликоля, полиоле гексаэтоксилированном бисфеноле А или их сочетании. Вариантом способа получения 1,5,7-триазабицикло-[4.4.0]-дец-5-ена является проведение стадий (a) формирования смеси, содержащей дизамещенный карбодиимид и дипропилентриамин; и (b) нагревание указанной смеси при температуре от 160°С до 240°С для обеспечения взаимодействия упомянутого дизамещенного карбодиимида с упомянутым дипропилентриамином. При необходимости проводят стадию с), где указанное нагревание осуществляют при добавлении разбавителя после стадии (b). Указанный способ осуществляют в отсутствие растворителя на основе простого эфира и/или спирта. Дизамещенный карбодиимид представляет собой диалкилкарбодиимид, например N,N′-диизопропилкарбодиимид, N,N′-дициклогексилкарбодиимид или их сочетания, либо диарилкарбодиимид, например ди-п-толилкарбодиимид. Стадию а) в обоих вариантах способа можно проводить в присутствии слабокислотного катализатора. Способ позволяет повысить степень превращения (более 90%) и избирательности процесса (100%) с получением желаемого продукта с высоким выходом за более короткое время реакции. 2 н. и 15 з.п. ф-лы, 7 пр.

Изобретение относится к кабельной промышленности, в частности к производству эмалированных проводов. В способе осуществляют нанесение на проволоку пленки эмаль-изоляции анафорезом при плотности тока j 2÷10 мА/см2 с последующим подводом тепла к проволоке с нанесенной эмаль-изоляцией. При этом при нанесении пленки эмаль-изоляции участок движущейся проволоки протяженностью L погружают в электрофоретический состав, останавливают проволоку, подают на нее положительный потенциал, величина которого обеспечивает значение тока анофореза I, равное I=πDLj, где D - диаметр проволоки, м, и при указанной величине тока осаждают на погруженный в электрофоретический состав участок проволоки пленку эмаль-изоляции в течение определенного времени. Причем для нанесения эмаль-изоляции используют электрофоретический состав, состоящий из следующих компонентов, мас.ч.: полиглицероэтилентерефталатная смола 46,0-48,0, 45-50%-ный полибутилтитанат в ксилоле 1,4-1,7, диэтиленгликоль 0,1-5,0, ксиленол 51,6-53,0, сольвент 9,3-19,0, диоксан 64-70, 1%-ный нашатырный спирт 22-24, нанотрубки из нитрида бора 10-12. Изобретение обеспечивает повышение теплопроводности и электрической прочности нанесенной эмаль-изоляции. 1 табл.
Наверх