Способ обработки отстоя сточных вод

 

Изобретение предназначено для обработки промышленных и бытовых сточных вод. Осадок сточных вод (ОСВ) нагревают, обрабатывают перекисью водорода в две стадии с промежуточным разделением отстоя на жидкую часть и осадок, подщелачивают и отделяют жидкую часть, содержащую гуматы. Перекись водорода берут в количестве 5-20% от сухой части ОСВ. Использование изобретения позволяет снизить содержание металлов в ОСВ и снижает загрязнение окружающей среды. 1 ил., 2 табл.

Изобретение относится к обработке промышленных и бытовых сточных вод, а именно к обработке отстоя сточных вод (ОСВ), состоящей из нескольких стадий, включающих химическое и термическое воздействие. В описании изобретения и в примерах проведения процесса переработки сточных вод употребляются следующие термины: Сточные воды (СВ) - промышленные и коммунальные стоки, которые подвергают очистке на биологических очистных сооружениях (БОС).

Осадок сточных вод (ОСВ) - смесь осадков, образующихся в первичных и во вторичных отстойниках в процессе очистки СВ на БОС, которая представляет собой гелеобразную, структурированную массу. Эта масса по реологическим свойствам является вязко-пластической жидкостью, поэтому разделение ОСВ на жидкую и твердую составляющие является сложной технической задачей. Утилизация ОСВ затруднена в связи с присутствием в нем патогенных микроорганизмов, тяжелых металлов, а большое количество воды затрудняет термическое обезвреживание. Складирование и захоронение приводят к гниению ОСВ и вторичному загрязнению окружающей среды. Поэтому основной задачей при разработке технологии переработки ОСВ является обезвреживание осадка и относительное снижение его влажности - до 65% и ниже. Полученные вещества могут быть использованы в производстве строительных материалов, например керамзита, стеновых камней и др.

Известные способы обработки ОСВ, как правило, включают стадии физического воздействия - отстаивание, расслоение, центрифугирование, сушку и т.п., и химическую обработку - подкисление и подщелачивание. В качестве окислителей могут использоваться воздух, озон, хлор; в качестве агентов, повышающих кислотность среды - гидроксиды натрия или калия, аммиак.

Так, в способе обработки осадков [1] в качестве окислителя используется хлор в количестве 1 - 10% от массы сухого осадка, а в качестве основания применяется аммиак.

Известен способ [2], по которому ОСВ обрабатывают следующим образом: обрабатываемые вещества вводят в первую камеру, где проводят его окисление, сопровождающееся снижением pH до 2 - 2,5 с помощью серной кислоты или хлора. Полученную массу обезвоживают и направляют во вторую камеру, где обрабатывают воздухом, озоном и известью. Спустя некоторое время массу переводят в расслаиватель, где твердую и жидкую фазы разделяют. Твердую фазу подвергают дальнейшей переработке в зависимости от назначения продукта, а жидкую рециклизуют. В обеих камерах поддерживается давление 30 - 60 фунт/дюйм или 146 - 293 кг/см2.

В другом процессе [3] для снижения расхода окислителя - кислорода процесс окисления предлагается проводить при повышенных температуре (200 - 370oC) и давлении 35 - 210 кг/см2 при контакте с кислородсодержащим газом, который вводят в водную суспензию органического вещества. Процесс ведут в смесителе со статической мешалкой, через которую циркулирует кислородсодержащий газ, обеспечивающий окисление органической составляющей.

Прототипом изобретения является способ, по которому процесс окисления проводят с использованием перекиси водорода [4].

При этом органические вещества разлагаются и окисляются, выделяя тепло, которое утилизируется. Согласно этому способу ОСВ с содержанием твердого вещества около 6% перемешивают со 30%-ной перекисью водорода таким образом, чтобы перекись водорода составляла 10% от сухой части ила. Смесь перемешивают в шаровой мельнице в течение нескольких минут. Образовавшаяся масса легко оседает и в жидкой части остается около 1,44% твердых и около 0,6 - 1% летучих веществ. В прототипе и в аналогах отсутствуют данные о содержании металлов (в том числе тяжелых) как в ОСВ, так и в продуктах его разделения.

Задачей, стоящей перед разработчиками изобретения, была разработка экономичного способа утилизации ОСВ, воплощение которого требует минимальных затрат энергии и реагентов и исключает загрязнение окружающей среды соединениями металлов.

Разработан способ, по которому ОСВ окисляют перекисью водорода в две стадии. Для этого исходный ОСВ нагревают до 70 - 80oC и вместе с перекисью водорода подают в реактор-окислитель 1. Обработанную в этом реакторе массу перекачивают на стадию разделения (например отстой или центрифугирование), где она делится на жидкую фазу и осадок. Осадок дополнительно обрабатывают перекисью водорода и щелочью (гидроокисью натрия или калия) до pH 10 - 12 и направляют на вторичное разделение, где происходит разделение на слой, состоящий из раствора солей гуминовых кислот и обезвоженный осадок. Раствор гуматов упаривают до нужного содержания сухого вещества. Общее количество перекиси водорода, необходимое для проведения процесса окисления ОСВ, составляет 5 - 20% от сухой части исходного ОСВ и зависит от влажности (весовой концентрации воды) исходного ОСВ в диапазоне 90 - 98%. На первую стадию подают 30 - 60% всей перекиси, а на вторую - остальное. Это необходимо для более полного окисления органической части ОСВ, разрушения структуры и отделения воды.

Таким образом, существенными отличиями предлагаемого способа от прототипа являются: - малое количество окислителя - перекиси водорода, вводимое в соотношении ОСВ: перекись 1:0,003 - 0,007 или 5 - 20% от сухой части ОСВ: - введение этого количества перекиси в два приема с промежуточным отделением от осадка жидкой фазы.

Схема осуществления предлагаемого способа приведена на чертеже.

Примеры проведения процесса представлены в табл. 1.

В табл. 2 представлено распределение ряда металлов, содержащихся в ОСВ по конечным продуктам переработки ОСВ.

Пример 1. Исходную массу ОСВ, имеющую влажность 90%, из емкости 1 через теплообменник 2, где происходит нагрев до 70oC, подают с расходом 20 кг/ч в реактор окисления. В реактор 3 из емкости 4 подают 30%-ный водный раствор перекиси в количестве 0,2 кг/ч, что соответствует соотношению ОСВ : перекись 1: 0,003. Время пребывания реакционной массы в реакторе 3 в условиях перемешивания составляет 0,5 ч. Далее из реактора масса подается на разделение в аппарат 5, где путем центрифугирования или отстоя делится на жидкую часть и осадок, в количестве 11,2 и 9 кг/ч соответственно.

Осадок подается в реактор 7, где смешивается с дополнительным потоком раствора перекиси водорода в количестве 0,2 кг/ч и со щелочью (40% едкого натра NaOH) в количестве 0,3 кг/ч. Таким образом, суммарное количество перекиси водорода, потраченной на переработку ОСВ, составляет 0,4 кг/ч, или 6% от сухой части ОСВ, что соответствует соотношению ОСВ : перекись водорода 1: 0,006.

Пример 2 (сравнительный). Проведение процесса отличается от примера 1 только количеством использованной перекиси водорода, не соответствующим изобретению. При таком режиме ОСВ оказывается недостаточно окисленным, что приводит к образованию большого количества осадка (50%) с влажностью примерно 82%. Утилизация осадка такой влажности не возможна и, следовательно, задача переработки ОСВ при этом режиме не выполняется.

Пример 3. В примере демонстрируется влияние температуры на процесс окисления ОСВ. Снижение температуры приводит к слабому окислению ОСВ, в результате чего недостаточно разрушается структура ОСВ, не происходит отделение воды и получается большое количество осадка (11 кг/ч) с большой влажностью (84%), что является недостаточным для утилизации осадка. Кроме того, при снижении температуры окисления уменьшается образование гуминовых кислот и понижается их выход.

Пример 4. В этом примере приведены результаты переработки ОСВ при одностадийном введении перекиси водорода. При таком режиме работы несколько повышается влажность осадка и возрастает его количество при сохранении выхода раствора гуматов примерно на том же уровне, как и в примере 1.

Пример 5. Показан результат более значительной подачи перекиси водорода на вторую стадию окисления - 85%. В результате по сравнению с примером 1 несколько возрастает выход осадка и возрастает его влажность. В то же время выход раствора солей гуматов слегка возрастает.

Пример 6. Проведение процесса отличается от всех предыдущих примеров тем, что показан режим и результаты переработки ОСВ значительно большей влажности (98%).

Таким образом, предлагаемая технология допускает переработку такого ОСВ, при этом удается получить осадок с достаточно низкой влажностью, который может быть утилизирован. Снижение выхода осадка и раствора солей гуматов в этом примере объясняется снижением доли сухого вещества в исходном ОСВ.

Пример 7. Использованы исходные ОСВ, влажность которых занимает промежуточное положение между примерами 1 и 6. Основные технологические параметры в этом примере находятся в соотношении, близком к оптимальному, поэтому при переработке ОСВ образуется осадок относительно малой влажности и получается значительное количество раствора гуматов.

Примеры 8 и 9. Проведение процесса по основным технологическим параметрам соответствует заявленному диапазону, в результате чего получена относительно низкая влажность осадка ОСВ. В примере 8 распределение перекиси водорода по стадиям аналогично примеру 7.

Пример 10. Режим проведения аналогичен примеру 5 по распределению перекиси водорода по стадиям окисления, причем на первую стадию подается относительно малая часть окислителя. В этих условиях влажность получающегося осадка больше, чем при оптимальных режимах обработки ОСВ.

Пример 11. Продемонстрирован режим обработки, который для ОСВ большой влажности дает наилучшие результаты и для реальных ОСВ является, по-видимому, оптимальным.

В целом, примеры 1, 6, 7, 8, 9 и 11 выполнены в диапазоне заявленных технологических параметров обработки ОСВ.

Примеры 2, 3, 4, 5 и 10 выполнены при отклонении от этих условий по каким-либо параметрам.

Источники информации 1. Патент США N 4500428, кл. C 02 F 11/02, опублик. 19.02.85.

2. ЕПВ N 147108, кл. C 02 F 11/06, опублик. 03.07.85.

3. А.с. СССР N 823317, кл. C 02 F 11/14, опублик. 1981.

4. Заявка Японии Kokai Tokko Koho N 4-74078, кл. C 07 F 11/06, опублик. 23.03.90 (прототип).

Формула изобретения

Способ переработки отстоя сточных вод, включающий окисление перекисью водорода, отличающийся тем, что отстой сточных вод нагревают, окисляют, подщелачивают и отделяют жидкую часть, содержащую гуматы, причем окисление перекисью водорода, взятой в количестве 5 - 20% от сухой части отстоя сточных вод, проводят в две стадии с промежуточным разделением отстоя на жидкую часть и осадок, при этом на первой стадии в отстой вводится 30 - 60% от расходуемой перекиси водорода, а на второй стадии - остальная ее часть.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к способу получения жидкого бессернистого органического топлива из отходов, образующихся после очистки промышленных и хозяйственно-бытовых сточных вод
Изобретение относится к способам химической обработки осадка сточных вод перед обезвоживанием и может быть использовано в цехах мехобезвоживания на очистных сооружениях, на станциях биохимической очистки хозяйственно-фекальных вод

Изобретение относится к экологии и может быть использовано при утилизации осадков сточных вод, образующихся на городских станциях аэрации

Изобретение относится к способу получения твердого тела, практически нерастворимого в воде и незагрязненного

Изобретение относится к очистке сточных вод и может быть использовано на биологических очистных сооружениях целлюлозно-бумажной, угольной, нефтехимической и нефтеперерабатывающей промышленности, а также на городских очистных сооружениях

Изобретение относится к способам переработки нефтяных шламов на нефтеперерабатывающих заводах и на местах добычи нефти

Изобретение относится к способу сжигания отходов любого происхождения, содержащих токсичные вещества, и к продукту обжига
Изобретение относится к химической технологии, а именно к обезвреживанию загрязненного грунта несимметричным диметилгидразином

Гуминовый концентрат, способ его получения, устройство для электрохимического получения гуминового концентрата (варианты). способ очистки воды от примесей, способ обезвоживания вязкотекучих сред, способ детоксикации органических соединений, способ утилизации осадков сточных вод, способ создания почв из естественных и искусственных грунтов и восстановления плодородия деградированных почв, способ компостирования органических отходов, способ утилизации осадков водопроводных вод // 2125039
Изобретение относится к области охраны и восстановления окружающей среды, более точно к технологиям, обеспечивающим восстановление загрязненных техногенными продуктами объектов окружающей среды, а точнее заявляемое изобретение касается гуминового концентрата, способа его получения, устройства для электрохимического получения гуминового концентрата, способа очистки вод от неорганических, органических и микробиологических примесей, способа обезвоживания вязкотекучих сред, способа детоксикации органических соединений, способа утилизации осадков сточных вод, способа создания почв из естественных и искусственных грунтов и восстановления свойств и плодородия деградированных почв, способ компостирования органических отходов, способ утилизации осадков водопроводных вод

Изобретение относится к области обработки осадков сточных вод, в частности шлам-лигнина целлюлозно-бумажной промышленности

Изобретение относится к способам переработки избыточного активного ила биологических очистных сооружений очистки сточных вод, содержащих тяжелые металлы

Изобретение относится к экологии и может быть использовано при утилизации осадков сточных вод, образующихся на городских станциях аэрации

Изобретение относится к способам обезвреживания и последующей утилизации высоковязких отходов промышленных сточных вод

Изобретение относится к обработке промышленных и бытовых сточных вод или отстоя сточных вод и может быть использовано при отделении взвешенных частиц размером менее 5 мкм, в том числе и активного ила из сточных вод
Изобретение относится к области процессов разделения твердой и жидкой фаз гетерогенной системы и может быть использовано при очистке сточных вод, в угледобывающей, углехимической, горнорудной, пищевой, химической промышленности, индустрии строительных материалов при выделении твердой фазы целевого компонента из суспензии
Наверх