Способ получения открытопористого материала на основе стеклоуглерода

 

Способ получения открытопористого материала на основе стеклоуглерода относится к получению углеродных материалов и может быть использовано в химической технологии для изготовления пористых электродов, фильтрующих материалов, барбатеров, мембран, адсорберов, теплообменной аппаратуры работающих в агрессивных жидких и газообразных средах при высоких температурах. Для изготовления стеклоуглеродистого материала используют смесь, содержащую жидкую фенолоформальдегидную смолу и порошок щавелевой кислоты в качестве порообразователя и кислотного отвердителя. Ввиду высокой растворимости щавелевой кислоты в воде, 98% порообразователя можно удалить за 20-30 мин. Полученный материал без сушки подвергают термообработке в закрытой форме, где окончательно происходит полное 100% удаление порообразователя. Изобретение обеспечивает: возможность регулирования размера и объема пор в широком диапазоне 10-100 микрон за счет регулирования фракционного состава порообразователя, многократное использование порообразователя, получение материала без следов порообразователя. 1 табл.

Изобретение относится к получению углеродных материалов на основе стеклоуглерода и может быть использовано в химической технологии для изготовления пористых электродов, фильтрующих элементов, барбатеров, мембран, адсорберов, теплообменной аппаратуры, работающих в агрессивных жидких и газообразных средах при высоких температурах.

Известен способ получения высокопористого ячеистого материала на основе стеклоуглерода [1].

В известном способе пористый углеродистый материал получают путем нанесения на заготовки из ретикулярованного пенополиуретана (ППУ) фенолоформальдегидной смолы (ФФС), отверждения заготовок и их последующей карбонизацией в интервале температур 150 - 160oC. При этом размер, структура и объем пор углеродного материала полностью зависит от структуры ячеек используемого ППУ и их нельзя регулировать на стадии получения заготовок. Прочность материала на основе стеклоуглерода, получаемого таким способом, и его плотность можно варьировать только в узком диапазоне.

Наиболее близким техническим решением к предлагаемому изобретению является способ получения пористого стеклоуглерода [2], путем заливки полимеризующейся смеси, содержащей фенольнофурфуральную смолу и кислотный катализатор в форму, заполненную частицами водорастворимой соли NaCl, KCl заданного гранулометрического состава. После частичной поликонденсации при 50 - 80oC и отмывки соли порообразователя заготовку сушат, затем растворяют в течение недели при 150 - 200oC.

Далее заготовку карбонизуют в инертной среде при 1200oC.

Недостатками этой технологии являются длительный процесс доотверждения заготовки, возможность образования закрытых пор, из которых порообразователь не будет удален ни при отмывке соли, ни при карбонизации, ввиду невысокой растворимости предлагаемых порообразователей (NaCl KCl), процесс отмывки длителен, особенно при формовании мелкопористого материала.

Цель изобретения - получение стеклоуглеродного открытопористого материала, из которого полностью и гарантированно удален порообразователь.

Сравнение заявляемого технического решения с прототипом и другими техническими решениями позволило сделать вывод, что оно неизвестно из уровня техники, а следовательно соответствует критерию "новизна".

Поставленная цель достигается тем, что для изготовления открытопористого материала на основе стеклоуглерода используют смесь, содержащую связующе, например фенолоформальдегидную смолу и порошок щавелевой кислоты, выполняющего одновременно роль порошкообразователя и кислотного отвердителя при следующем соотношении компонентов мас.%: жидкая фенолоформальдегидная смола - 20 - 50, щавелевая кислота - 80 - 50.

Смесь тщательно перемешивают, заливают в форму, отверждают при температуре 20 - 80oC. В процессе отверждения происходит полимеризация связующего с переходом его в резитнонеобратимое твердое состояние.

Порошкообразный порообразователь удаляют из термообработанной заготовки растворением его в воде, лучше горячей и проточной.

Ввиду высокой растворимости щавелевой кислоты в воде, при 100oC в 100 г воды растворяется 120 г щавелевой кислоты, 98% порообразователя удаляют за 20 - 30 мин.

В процессе растворения порообразователя в материале образуется сложная развитая и жесткая поровая структура с определенным средним размером поровых каналов, определяемым главным образом размером частиц порошкообразного порообразователя.

Полученный материал без сушки подвергают термообработке в закрытой форме с вертикальной газоотводной трубой. Термообработку ведут равномерным повышением температуры от комнатной 20oC до 700 - 1000oC со скоростью 2 - 4oC/мин. При 1000oC материал выдерживают не менее 30 мин, затем охлаждают в форме со скоростью 4 - 10oC/мин.

В процессе термообработки происходит полное 100%-ное удаление и разложение до углекислого газа и воды порообразователя со вскрытием закрытых пор, пиролиз и карбонизация фенолоформальдегидной смолы.

Регулированием фракционного состава порообразователя, соотношением связующего и порообразователя возможно варьирование размера и объема пор в котовом открытопористом стеклоуглероде в широком диапазоне.

Использование предлагаемого изобретения обеспечивает возможность регулирования размера и объема пор в широком диапазоне от десятков до сотен микрон за счет регулирования фракционного состава порообразователя; многократное использование после высушивания и помола порообразователя; получение стеклоуглеродного открытопористого материала без следов порообразователя; варьирование в диапазоне нескольких порядков электропроводности стеклоуглеродного материала, путем применения максимальной температуры термообработки.

В таблице приведены характеристики 7 примеров образцов открытопористого материала на основе стеклоуглерода.

Заготовки образцов формовались из смеси фенолоформальдегидной смолы СФЖ-303 со щавелевой кислотой при различном соотношении масс.

В примерах 2, 3, 4, 5, 6 получены качественные образцы с широкой вариацией свойств.

В примере 1 образцы на стадии растворения порообразователя сохраняют высокую прочность, однако при термообработке они разрушаются.

В примере 7 образцы на стадии растворения порообразователя превращаются в рыхлую губчатую массу, которая не сохраняет первоначальную форму.

Формула изобретения

Способ получения открытопористого материала на основе стеклоуглерода, включающий смешение жидкой фенолоформальдегидной смолы и порообразователя с последующим отверждением и карбонизацией, отличающийся тем, что в качестве порообразователя и одновременно кислотного отвердителя используют щавелевую кислоту.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к строительным материалам

Изобретение относится к производству теплоизоляционных материалов

Изобретение относится к химической технологии и может быть использовано для изготовления химически стойких пористых электродов, фильтрующих материалов, барботеров, мембран, адсорбентов, нагревательных элементов теплообменной аппаратуры

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано при переработке нефти или тяжелых углеводородных соединений для получения объемного углеродного каркаса для композитных материалов. В соответствии с заявленным способом подготавливают опалубочную форму, сечение которой определяет профиль углеродного каркаса, и формируют внутри опалубочной формы массив твердотельного плавкого катализатора-порообразователя из отдельных элементов, имеющих либо правильную, либо неправильную геометрическую форму, причем укладывание отдельных элементов осуществляют таким образом, что межреберный зазор формирует по ребрам и вершинам уложенных тел неразрывные межреберные опалубочные каналы. Готовят сырьевую смесь путем введения в тяжелые углеводородные соединения сокатализатора, состоящего из смеси легких углеводородов, заполняют внутри опалубочной формы межреберные опалубочные каналы в теле массива твердотельного плавкого катализатора-порообразователя сырьевой смесью, помещают опалубочную форму полностью в расплав каталитической смеси, имеющей температуру 200-300°C, и выдерживают опалубочную форму в расплаве каталитической смеси до расплавления массива твердотельного плавкого катализатора-порообразователя и образования объемного углеродного каркаса. Затем извлекают опалубочную форму вместе с полученным объемным углеродным каркасом и проводят его очистку от остатков жидкого расплава каталитической смеси. В качестве плавкого катализатора-порообразователя используют смесь хлоридов металлов, имеющую температуру плавления 180-200оС. Технический результат изобретения - упрощение производства углеродного каркаса за счёт исключения стадии получения углеродного волокна. 2 н. и 14 з.п. ф-лы, 3 табл., 4 ил.

Изобретение относится к химической технологии, а именно к способам получения открытопористых материалов на основе стеклоуглерода, и может быть использовано в нефте-газохимической и нефте-газоперерабатывающей промышленностях при получении каталитических систем синтеза жидких углеводородов. Жидкую фенолоформальдегидную смолу смешивают с порошком щавелевой кислоты различного фракционного состава (в качестве порообразователя) до получения однородной пластичной массы, формуют заготовки вибрационным воздействием, отверждают и проводят термообработку в статической атмосфере в интервале температур от 210 до 250°C и пиролитическую карбонизацию в защитной атмосфере. Отверждение заготовки осуществляют при температуре 60-80°C в течение 20-60 минут. Перед карбонизацией в полученную пористую полимерную заготовку возможно введение прекурсоров металлов из группы железа методом пропитки. Порообразователь удаляют из заготовки методом экстракции. Способ технологически прост и экономически выгоден. Технический результат изобретения - уменьшение плотности и повышение прочности при одновременном сохранении удельной адсорбционной поверхности получаемого материала порядка 300 м2/г. 3 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к получению пористых углеродных изделий и может быть использовано в электродах для топливных ячеек, суперконденсаторах и электрических аккумуляторах, в качестве адсорбентов и других областях. Заявленный способ получения пористого углеродного продукта включает изготовление монолитного шаблона из неорганического матричного материала, имеющего соединенные друг с другом поры, инфильтрирование пор шаблона, углеродом или веществом-предшественником углерода, образующим каркас сырца, содержащий углерод, окруженный матричным материалом, и кальцинирование каркаса сырца, с образованием пористого углеродного продукта. Шаблон получают осаждением ультрадисперсного порошка путем подачи в реакционную зону гидролизуемого или окисляемого исходного соединения матричного материала, где оно превращается в частицы матричного материала путем гидролиза или пиролиза, при этом частицы матричного материала являются агломерированными или агрегированными и образуют шаблон. Технический результат изобретения - создание материала с иерархической структурой пор более низкозатратным способом. 3 н. и 10 з.п. ф-лы, 6 ил.

Изобретение относится к производству изделий из высокотемпературных композиционных материалов и может быть применено в авиационной, ракетно-космической и железнодорожной промышленности, в двигателестроении и энергетическом машиностроении. Для изготовления пористого каркаса-основы штапельный полимерный материал с высоким коксовым остатком в виде нетканых холстов подвергают иглопробиванию с целью его разволокнения. Наносят на разволокненные холсты связующее, а затем производят их прессование при температуре 120-200°С и давлении 3-5 МПа в течение 10-12 ч и остужают перед карбонизацией до комнатной температуры. Карбонизацию проводят путем обжига при температуре 1000°С в течение 1-2 ч с одновременным прессованием давлением 0,1-0,15 МПа. Используют связующее, плавящееся при температуре прессования, затвердевающее при комнатной температуре и полностью разлагающееся при карбонизации. Обеспечивается повышение качества каркаса-основы композиционного материала за счет придания ему поверхностной шероховатости не выше металлической. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области шумозащитных панелей и касается способа изготовления керамической шумозащитной панели изогнутой формы. Способ включает следующие операции: пропитку волоконной структуры, определяющей сотовую структуру, смолой-прекурсором керамики; полимеризацию смолы-прекурсора керамики при удержании волоконной структуры на устройстве, форма которого соответствует изогнутой форме окончательно получаемой сотовой структуры; прикрепление к сотовой структуре первой и второй обшивок; каждая из обшивок представляет собой волоконную структуру, пропитанную смолой-прекурсором керамики, и обе обшивки прикрепляются к указанной сотовой структуре до или после полимеризации смолы указанных обшивок; пиролизацию собранного узла, включающего в себя сотовую структуру с первой и второй обшивками; и уплотнение указанного узла посредством химической инфильтрации в паровой фазе. Изобретение обеспечивает создание шумозащитной панели из композиционных материалов с керамической матрицей, имеющей изогнутую форму, соответствующую форме звукоизолируемого элемента. 9 з.п. ф-лы, 27 ил.

Изобретение относится к области геополимеров. Объектами настоящего изобретения являются: способ получения геополимера, геополимер, полученный этим способом, каталитическая подложка или подложка для разделения химических соединений, применение геополимера в области катализа и фильтрования. Способ получения геополимера содержит следующие последовательные этапы, на которых задают характеристику общей пористости получаемого геополимера; определяют значение, по меньшей мере, для одного параметра, выбранного из группы, в которую входят общее количество воды и гранулометрический состав необязательных силикатных компонентов, которое позволяет получить указанную характеристику общей пористости; выбирают указанное предварительно определенное значение. Способ также содержит стадию растворения/поликонденсации алюмосиликатного сырья в активирующем растворе, который, при необходимости, может содержать силикатные компоненты. Геополимер имеет мономодальную мезопористость с 50% пор, имеющих доступный диаметр, определяемый ртутной порометрией, распространяющийся на менее чем 5 нм (узкое распределение размера пор), или имеет мономодальную макропористость с 50% пор, имеющих доступный диаметр, распространяющийся на менее чем 10 нм (узкое распределение размера пор) или на от 10 до 50 нм (более широкое распределение размера пор). Заявленный способ позволяет получать геополимеры в виде монолитных материалов, пористость которых можно регулировать еще на стадии приготовления состава смеси. 9 н. и 13 з.п. ф-лы, 3 ил., 4 табл., 5 пр.

Изобретение относится к химической технологии, а именно к способам получения открытопористых материалов на основе стеклоуглерода, и может быть использовано в нефте-газохимической и нефте-газоперерабатывающей промышленностях при получении каталитических систем синтеза жидких углеводородов. Жидкую фенолоформальдегидную смолу смешивают с порошком щавелевой кислоты различного фракционного состава (в качестве порообразователя) до получения однородной пластичной массы, формуют заготовки вибрационным воздействием, отверждают и проводят термообработку в статической атмосфере в интервале температур от 210 до 250°C и пиролитическую карбонизацию в защитной атмосфере. Отверждение заготовки осуществляют при температуре 60-80°C в течение 20-60 минут. Перед карбонизацией в полученную пористую полимерную заготовку возможно введение прекурсоров металлов из группы железа методом пропитки. Порообразователь удаляют из заготовки методом экстракции. Способ технологически прост и экономически выгоден. Технический результат изобретения - уменьшение плотности и повышение прочности при одновременном сохранении удельной адсорбционной поверхности получаемого материала порядка 300 м2/г. 3 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к получению углеродных материалов на основе стеклоуглерода и может быть использовано в химической технологии для изготовления пористых электродов, фильтрующих элементов, барбатеров, мембран, адсорберов, теплообменной аппаратуры, работающих в агрессивных жидких и газообразных средах при высоких температурах

Наверх