Способ упрочняющей обработки деталей из жаропрочных нитридо- , карбидо- и боридообразующих материалов, подвергнутых ионно-имплантационному модифицированию азотом, углеродом или бором

 

Способ используется для обработки деталей, работающих в сложных условиях нагружения. Способ включает проведение ионной имплантации азотом, углеродом или бором с энергией 30 - 50 кэВ, плотностью тока 30 - 50 мкА/см2 и флюэнсом 1016 - 1018 ион/см2, постимплантационный отжиг при 450 - 550oC и давлении остаточных газов 10-3 - 5 10-3 Па в течение 1,5 - 3,5 ч, после чего на деталь воздействуют знакопеременной нагрузкой с числом циклов нагружения более 103 - 104 и напряжением, величину которого выбирают из условий работы деталей или равной 0,2 - 0,4 (Gпроч + Gтек), где Gпроч - предел прочности и Gтек - предел текучести материала детали. Способ позволяет повысить эксплуатационные свойства деталей за счет создания в поверхностных слоях дискретного распределения дислокаций. 2 ил.

Изобретение относится к области немеханической обработки деталей из жаропрочных сплавов, работающих в сложных условиях нагружения и используемых в машиностроении, судостроении и авиадвигателестроении с целью повышения эксплуатационных свойств.

Известны такие способы упрочняющей обработки высоконагруженных деталей, как механико-термические методы обработки, основанные на одно- или многократном деформировании металла, чередующиеся с термообработкой при температурах ниже температур начала рекристаллизации. В результате этого в материале развивается полигональная субструктура, что, в конечном счете, приводит к повышению прочностных характеристик деталей [1].

Основным недостатком способов механико-термической обработки является то, что они не предусматривают формирование полигональной дислокационной структуры в поверхностных слоях.

Кроме того, известен способ модификации поверхностных слоев жаропрочных материалов путем облучения ионами высоких энергий, включающий в себя ионную очистку и имплантацию ионов азота с последующей термообработкой [2]. При этом способе модифицируются поверхностные слои деталей.

Однако в указанном способе не ставится задача получения полигональной дислокационной структуры.

Наиболее близким по технической сущности и достигаемому результату является способ упрочняющей обработки изделий из электропроводящих материалов, включающий осаждение паров нейтральных атомов при одновременной бомбардировке ионами металла поверхности обрабатываемого изделия, находящегося под нагрузкой [3].

Недостатки прототипа: необходимость создания специального оборудования, позволяющего совместить нанесение покрытия, ионную имплантацию и непрерывное нагружение образца; создание в поверхностных слоях значительных напряжений при нагрузке (выше предела текучести).

Задачей, на решение которой направлено заявляемое изобретение, является повышение эксплуатационных свойств деталей, предварительно подвергнутых ионно-имплантационному модифицированию (а именно ионной имплантации и постимплантационному отжигу), за счет создания в поверхностных слоях упорядоченного распределения дислокация полигонального типа.

Поставленная задача достигается тем, что сначала проводят ионно-имплатационное модифицирование, заключающееся в ионной имплантации азота, углерода или бора с энергией 30 - 50 кэВ, плотностью тока 35 - 50 мкА/см2 и флюэнсом 1016 - 1018 ион/см2 и постимплатационном отжиге при 450 - 550oC и давлении остаточных газов 10-3 - 510-3 Па в течение 1,5 - 3,5 ч, затем детали подвергают воздействию знакопеременной нагрузки с числом циклов нагружения более 103 - 104 и напряжением, величину которого выбирают из условий работы деталей или равной 0,2 - 0,4 (Gпроч + Gтек), где Gпроч - предел прочности и Gтек - предел текучести материала детали.

В результате этого, в поверхностных слоях толщиной свыше 40 мкм ионно-модифицированных деталей формируется полигональная структура, которая характеризуется дискретными дислокационными построениями.

Теоретическое объяснение наблюдаемого эффекта заключается в следующем. При ионно-имплантационном модифицировании азотом, углеродом и бором нитридо-, карбидо- и боридообразующих мишеней формируются слои, обогащенные кислородом и углеродом, захватываемыми с поверхности, и имплантируемым элементом. При постимплатационной термообработке в поверхностных слоях образуются в соответствии с диаграммами фазового состояния равномерно распределенные преципитаты. Дислокации при знакопеременном нагружении затормаживаются у преципитатов и образуют упорядоченную дислокационную систему полигонального типа.

Такая дислокационная структура, формируемая в поверхностных слоях, обусловливает повышение эксплуатационных характеристик деталей в целом.

Лопатки компрессора ГТД из сплава ВТ18У и ВТ9 на стадии финишной обработки были предварительно подвергнуты ионной имплантации азота с энергией 40 кэВ, плотностью тока 40 мкА/см2 и флюэнсом 1017 ион/см2 и постимплантационному отжигу при 450 - 550oC и давлении остаточных газов 510-3 Па в течение 2 ч. Затем детали подвергли знакопеременному высокочастотному нагружению при 20oC и частоте 1000 Гц на базе более 107 циклов.

На фиг. 1 и 2 представлена структура поверхностного слоя деталей из сплава ВТ18У и ВТ9, полученная с помощью метода просвечивающей электронной микроскопии тонких фольг. Толщина исследуемых слоев составляла 0 - 20 мкм и 20 - 40 мкм. Дислокационная структура характеризуется упорядочением полиэдрического типа. Испытания выносливости и длительной прочности лопаток компрессора ГТД показали повышение этих параметров на 12,5 и 15,5% соответственно.

Источники информации 1. Тушинский Л.И. Теория и технология упрочнения металлических сплавов. - Новосибирск: Наука, Сиб. отд. 1990.

2. Патент Российской федерации N 2007501, C 23 C 14/48, 1991.

3. Авторское свидетельство СССР N 1821495, C 23 C 14/32, 1990.

Формула изобретения

Способ упрочняющей обработки деталей из нитридо-, карбидо- и боридообразующих металлов, подвергнутых ионно-имплантационному модифицированию азотом, углеродом или бором, отличающийся тем, что сначала проводят ионно-имплантационное модифицирование, заключающееся в ионной имплантации азота, углерода или бора с энергией 30 - 50 кэВ, плотностью тока 35 - 50 мкА/см2 и флюэнсом 1016 - 1018 ион/см2 и в постимплантационном отжиге при температуре 450 - 550oC и давлении остаточных газов 10-3 - 5 10-3 Па в течение 1,5 - 3,5 ч, затем детали подвергают воздействию знакопеременной нагрузки с числом циклов нагружения более 103 - 104 и напряжением, величину которого выбирают из условий работы деталей или равной 0,2-0,4(Gпроч + Gтек), где Gпроч - предел прочности и Gтек - предел текучести материала детали.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к неметаллической поверхностной обработке деталей из сплавов титана, используемых в машиностроении, авиадвигателестроении, судостроении и т

Изобретение относится к изготовлению деталей газотурбинных двигателей, преимущественно авиационных, и может быть использовано для образования теплозащитных покрытий на деталях горячего тракта турбины

Изобретение относится к методам модификации поверхностных слоев материалов, в частности к способам формирования поверхностных сплавов с помощью концентрированных потоков энергии (КВЭ)

Изобретение относится к радиационному материаловедению и предназначено для улучшения электрофизических, химических и механических свойств поверхности изделий из различных материалов

Изобретение относится к плазменным технологиям нанесения пленочных покрытий и предназначено для очистки плазменного потока дуговых ускорителей от микрокапельной фракции

Изобретение относится к способам нанесения покрытий ионной имплантацией и может быть использовано в электронной и других отраслях промышленности

Изобретение относится к технике нанесения покрытий в вакууме и может быть использовано в машиностроении
Изобретение относится к области машиностроения и может быть использовано на производстве для упрочнения стального прессового инструмента
Изобретение относится к области машиностроения и может быть использовано для упрочнения прессового инструмента

Изобретение относится к способам модификации поверхности деталей из титановых сплавов путем ионного легирования с последующей термообработкой и может быть использовано при изготовлении изделий в машиностроительной, авиационной и других отраслях промышленности, которые эксплуатируются при высоких нагрузках и температурах

Изобретение относится к устройствам получения интенсивных ионных пучков и может быть использовано в установках имплантационной металлургии для увеличения глубины ионной имплантации (ИИ)

Изобретение относится к ионно-лучевым технологиям получения материалов с заданными свойствами, а именно к способу повышения износостойкости твердосплавного режущего инструмента
Изобретение относится к технической физике и может быть использовано в любой отрасли для улучшения электрофизических, химических и механических свойств поверхности изделий

Изобретение относится к области электронной техники и может найти применение при изготовлении интегральных схем с большой информационной емкостью методом литографии, а также в других процессах прецизионной обработки поверхности материалов ионным лучом, например нанесение на субстрат рисунков с изменением в нем поверхностных свойств материалов, в частности изменение типа проводимости в полупроводниковых материалах путем внедрения легирующих ионов, изменение других физических свойств материала за счет внедрения одноименных и инородных ионов, создание на поверхности новых слоев в результате осаждения атомов вещества из окружающих паров облака под влиянием падающих ионов, удаление вещества с поверхности субстрата в результате его распыления

Изобретение относится к плазменной химико-термической обработке поверхности деталей и может быть использовано в машиностроении
Изобретение относится к области немеханической поверхностной обработки и может быть использовано для повышения выносливости, длительной прочности и улучшения качества поверхности деталей из сплавов на основе титана на стадии ремонта в машиностроении, авиадвигателестроении, судостроении и т.п

Изобретение относится к области ионно-лучевой вакуумной обработки материалов и может быть использовано в инструментальной промышленности для повышения износостойкости режущего инструмента, штамповой оснастки, деталей машин и механизмов

Изобретение относится к области модификации поверхности материалов ионными пучками и может быть использовано в инструментальной промышленности, машиностроении, при производстве конструкционных материалов
Наверх