Каталитическая система для получения полиолефинов и композиция, используемая для полимеризации олефинов

 

Изобретение касается системы катализатора, включающей в себя компонент переходного металла группы 1VВ и компонент активатора, для полимеризации олефинов для получения полимера с высокой молекулярной массой. Компонент переходного металла группы 1VВ содержит один циклопентадиениловый лиганд и один гетероатомный лиганд, причем лиганды могут быть связаны друг с другом мостиковой связью, компонент активатора содержит катион, которым может быть кислота Брэнстеда, способная отдавать протон (обозначена как L,-H, где L, - нейтральное основание по Люису, а H - водород) и совместимая с некоординационным анионом. В присутствии системы катализатора согласно изобретению при полимеризации олефинов при температуре 100 - 300oС в течение от 1 с до 10 ч получают полиолефин, имеющий среднюю мол. м. от 1000 до 500000 и распределение мол. м. примерно 1,5 или более. 3 с. и 18 з.п. ф-лы, 1 табл.

Изобретение относится к каталитической системе, включающей соединения переходных металлов группы IV-B Периодической таблицы элементов и активатор, а также к композиции с использованием этой каталитической системы для получения полиолефинов, в частности полиэтилена, полипропилена и сополимеров этилен -- олефина.

Известны различные способы и катализаторы для гомополимеризации или сополимеризации олефинов. Традиционные каталитические системы Циглера-Натта, включающие соединения переходного металла и сокатализатор-алкилалюминий, способствуют получению полиолефинов, имеющих высокий молекулярный вес, но широкое распределение молекулярной массы. Традиционные типы катализаторов Циглера-Натта имеют очень высокую активность, и полученные с этими катализаторами полиолефины имеют малое количество остатка катализатора и не требуют последующей обработки для обеззоливания остатка катализатора.

Позднее была разработана каталитическая система типа "металлоцен", в которой соединение переходного металла имеет лиганды с циклопентадиенильным кольцом, предпочтительно по крайней мере с двумя кольцами. Такое соединение переходного металла, названное "металлоценом", катализирует превращение олефиновых мономеров в полиолефины. Металлоценовые соединения металлов группы IVB в частности, бис(циклопентадиенил) титаноцены и -цирконоцены, используют в качестве соединений переходного металла в каталитической системе для производства полиолефинов и этилен -- олефиновых сополимеров. Когда каталитическая система, содержащая такие металлоцены, содержит в качестве сокатализатора алкилалюминий, как, например, в известной системе катализатора типа Циглера-Натта, то ее каталитическая активность обычно очень низка, поэтому она не представляет интереса для промышленного применения.

Известно, что металлоцены можно сокатализировать алюмоксаном, а не алюминийалкилом, для получения металлоценового катализатора с высокой активностью для производства полиолефинов с умеренно высоким молекулярным весом. К сожалению, количество алюмоксанового сокатализатора, необходимое для получения металлоценового компонента с высокой активностью, является высоким, и обычно находится в пределах мольного соотношения Al к переходному металлу. Поэтому полиолефин, полученный с таким металлоцен-алюмоксановым катализатором, может содержать нежелательное количество остатка катализатора (зольность, измеренная по содержанию нелетучего алюминия и переходного металла).

В Европейских заявках 277003 и 277004 раскрыт новый способ активирования алкил-металлоценовых комплексов металлов группы IVB. Улучшенные металлоценовые катализаторы были получены из по крайней мере двух компонентов. Первым компонентом является бисциклопентадиенильное производное металла группы IVB, содержащее по крайней мере один лиганд, который будет реагировать с катионной частью второго компонента. Вторым компонентом является реагент, содержащий катион, который будет необратимо вступать в реакцию по крайней мере с одним лигандом, содержащимся в соединении металла группы IVB (первого компонента), и некоординационный анион, который является объемным, лабильным и устойчивым. Соответствующие некоординационные анионы, раскрытые в этих заявках, включают в себя: 1) анионные координационные комплексы, содержащие множество липофильных групп, ковалентно координационно связанных и защищающих центральный металл, несущий заряд иди ядро металлоида, и 2) анионы, содержащие множество атомов бора, например, карбораны, металлокарбораны и бораны. После смешения первого и второго компонента катион второго компонента вступает в реакцию с одним из лигандов первого компонента, в результате образуется ионная пара, состоящая из катиона металлоцена группы IVB с координационным числом 3 и валентностью 4+, и упомянутого некоординационного аниона. Недостатком этих каталитических систем является получение их из металлоценовых комплексов металлов группы IVB, содержащих по крайней мере два циклопентадиенильных лиганда.

Катализаторы, свободные от алюминийалкила, для полимеризации олефинов, приготовленные из комплексов переходных металлов, содержащих меньше, чем два циклопентадиенильных кольца, мало изучены. Джон Беркау сообщил (Organometallics, 1990, 9, 867) о синтезе катализатора на основе моноциклопентадиенилскандия [Me2Si(C2Me4)(N-But)ScH(PMe3)]2 для полимеризации. Этот нейтральный катализатор III группы системы элементов имеет низкую активность и он очень дорогостоящий из-за высокой стоимости скандия. Существует необходимость в способе получения высокоактивных, универсальных катализаторов, свободных от алюминийалкила, для полимеризации олефинов, полученных из моноциклопентадиенильных лигандов.

Каталитическая система согласно изобретению содержит переходный металл группы IVB Периодической таблицы элементов (Справочник CRC по химии и физике, 68-ое издание, 1987-1988) и анионообменный реагент, который можно применять при полимеризации в растворе, суспензионной полимеризации, газофазной полимеризации или полимеризации в массе, для получение полиолефина с высокой средней молекулярной массой и относительно узким распределением молекулярной массы.

Предлагаемая согласно настоящему изобретению каталитическая система для получения полиолефинов содержит взаимодействующие компоненты: A - компонент переходного металла IVB группы и B - активатор. В качестве компонента A она содержит одно из соединений общей формулы I или II: где M - цирконий, гафний или титан, и находится в состоянии высшей степени окисления (4+, d0 - комплекс); (C5H5-y-xRx) - циклопентадиенильное кольцо, которое замещено 0-5 радикалами R, x - 0, 1, 2, 3, 4 или 5 и означает степень замещения, причем каждый радикал R, независимо от других, представляет собой группу, выбираемую из группы, включающей C1 - C20- гидрокарбильные радикалы, замещенные C1 - C20- гидрокарбильные радикалы, где один или несколько атомов водорода замещены атомами галогена, C1-C20- гидрокарбилзамещенные металлоидные радикалы, где атомы металлоида выбирают из группы IVA Периодической таблицы элементов, и атомы галогена, или же (C5H5-y-xRx) представляет собой циклопентадиенильное кольцо, в котором две смежные R-группы вместе образуют циклы C4-C20, в результате чего образуется полициклический циклопентадиенильный лиганд; (JR1z-1-y) - гетерогенный лиганд, в котором J - элемент с координационным числом 3 из группы VA или элемент с координационным числом 2 из группы VIA Периодической системы элементов; каждый R1, независимо от других, обозначает радикал, выбираемый из группы, включающей C1 - C20 гидрокарбильные радикалы, замещенные C1-C20- гидрокарбильные радикалы, где один или несколько водородных атомов замещены атомами галогена, а z - координационное число элемента J; каждый из Q, независимо от других, может обозначать водород, C1-C20- гидрокарбильный радикал, замещенный гидрокарбильный радикал, в котором один или несколько атомов водорода замещены электроакцепторной группой, в частности, атомом галогена или алкоксигруппой, или C1-C20 - гидрокарбилзамещенный металоидный радикал, где металлоид выбирают из группы IVA Периодической таблицы элементов при условии, что в том случае, когда любой из Q обозначает гидрокарбил, этот радикал Q отличен от группы (C5H5-y-xRx), или же оба Q вместе могут образовывать алкилиден, олефин, ацетилен или циклометаллагидрокарбил.

y= 0 или 1, причем, когда y=1, B - ковалентная мостиковая группа, содержащая элемент группы IVA или VA; W - число от 0 до 3;
L - нейтральное основание Льюиса или же L обозначает соединение второго переходного металла того же самого типа, вследствие чего оба металлических центра M и M' связаны мостиковыми группами Q или Q', где значения символа M' идентичны значениям символа M, а значения символа Q' идентичны значениям Q, причем такие соединения отвечают формуле II. В качестве компонента B - каталитическая система содержит активатор, имеющий (1) катион, который вступает в необратимую реакцию по меньшей мере с одним лигандом, входящим в состав упомянутого соединения металла группы IVB, и (2) подвижный объемный анион, который представляет собой либо комплекс с одной координационной связью, содержащий множество липофильных групп, образующих ковалентную координационную связь и защищающих центральный, несущий заряд атом металла или металлоида, или анионный комплекс, содержащий множество атомов бора, причем объемность указанного аниона такова, что при взаимодействии катионной части активатора со способным вступать в реакцию с реакционноспособным протоном заместителем упомянутого переходного металла группы IVB образуется металлический катион, указанный анион находится в стерически затрудненном состоянии для образования ковалентной координационной связи с металлическим катионом группы IVB, а подвижность указанного аниона такова, что упомянутый анион способен замещаться с отщеплением от вышеуказанного металлического катиона группы IVB ненасыщенным углеводородом, у которого сила основания Льюиса равна или превышает силу этилена, причем указанные компоненты взаимодействуют в эквимолярных количествах.

Предпочтительно, если каталитическая система в гетероатомном лиганде содержит элемент J, который представляет собой азот, фосфор, кислород или серу.

Предпочтительна каталитическая система, где y=1, а B - линейная, разветвленная или циклическая алкиленовая группа, содержащая от 1 до 6 углеродных атомов, алкилзамещенная силилалкиленовая группа, содержащая 1 или 2 атома кремния вместо углеродных атомов в цепи, или алкилзамещенная силаниленовая группа Si1-Si2, а в гетероатомном лиганде элемент J представляет собой азот.

Желательно, чтобы, в частности, эта каталитическая система имела значения: y= 1, а B - алкилзамещенная силилалкиленовая группа, содержащая 1 или 2 атома кремния вместо углеродных атомов в цепи, или алкилзамещенная силаниленовая группа Si1-Si2.

Предпочтительна каталитическая система, в которой активатор отвечает формуле
[(L'-H)+]d[(M')m Q1Q2...Qn]d
где
L' - нейтральное основание Льюиса;
H - водород,
(L'-H) - кислота Бренстеда,
M' - металл или металлоид, выбираемый из группы с VB по VA Периодической таблицы элементов, то есть из групп VB, VIB, VIIB, VIII, IB, IIB, IIIA, IVA и VA;
каждый из Q1 - Qn независимо от других представляет собой водород, диалкиламидо, алкоксид, арилоксид, гидрокарбил, замещенный гидрокарбил или органометаллоидный радикал, причем один, но не больше, чем один, из Q1-Qn может быть галогеном;
m - целое число от 1 до 7;
n - целое число от 2 до 8;
n-m = d;
либо каталитическая система содержит активатор, отвечающий формуле
[L'-H]+[BAr1Ar2X3X4]
где
L' - нейтральное основание Льюиса;
H - водород;
[L'-H] - кислота Бренстеда,
B - бор с валентностью 3+;
Ar1 и Ar2 - одинаковые или различные ароматические или замещенные ароматические углеводороды, причем эти группы могут быть связаны друг с другом через устойчивую мостиковую группу;
X3 и X4 - независимо водород, галоид, гидрокарбил, замещенный гидрокарбил или органометаллоидный радикал.

В частности, желательно, чтобы каталитическая система содержала активатор, представленный формулой
[L'H]+ [B(C6F5)4]-
где
L' - нейтральное основание Льюиса;
H - атом водорода;
[L'H] - кислота Бренстеда;
B - бор с валентностью 3+,
а в гетероатомном лиганде элемент J является азотом.

Обычно в такой каталитической системе M обозначает цирконий или гафний, а циклопентадиенильное кольцо содержит четыре группы R, то есть x=4, либо одну группу R, то есть x=1.

Предпочтительна каталитическая система, в которой активатор отвечает формулам
[L- H]c[(CX)a(M X)mXb]c-,
[L'-H]d[[[(CX3)a'(M''X4)m' (X5)в']c-]2Mn+]d-
где
[L'-H] - либо H+, либо аммоний, либо замещенный аммониевый катион, в котором до 3 водородных атомов замещены гидрокарбильным радикалом, содержащим от 1 до 20 углеродных атомов, или замещенным гидрокарбильным радикалом, содержащим от 1 до 20 углеродных атомов, где один или несколько водородных атомов замещены атомами галогена, фосфониевые радикалы, замещенные фосфониевые радикалы, в каждом из которых до 3 водородных атомов замещены гидрокарбильным радикалом, содержащим от 1 до 20 углеродных атомов, или замещенным C1-C20- гидрокарбильным радикалом, где один или несколько водородных атомов замещены атомами галогена, и тому подобное;
C - углеродный атом;
M''- атом бора;
каждый из X, X', X'', X3, X4 и X5 - радикал, выбираемый независимо от других от класса, который охватывает водород, галогениды, гидрокарбильные радикалы, каждый из которых содержит от 1 до 20 углеродных атомов, замещенные гидрокарбильные радикалы, содержащие 1-20 углеродных атомов, где один или несколько водородных атомов замещены атомами галогена, органометаллоидные радикалы, у которых каждый гидрокарбильный заместитель в органической части содержит от 1 до 20 углеродных атомов, а указанный металл выбирают из группы IVA Периодической таблицы элементов;
M - атом переходного металла;
каждый из a и b - целое положительное число, превышающее 0;
c - целое положительное число, превышающее 1;
a+b+c - целое положительное число от 2 до 8;
m - целое положительное число от 5 до 22;
каждый из a' и b', которые могут быть как идентичными, так и различными, превышает 0;
c' - целое положительное число, превышающее 2;
a'+b'+c' - целое положительное четное число приблизительно от 4 до 8;
m' - целое положительное число от 6 до 12;
n - такое целое положительное число, что 2c'-n=d;
d - целое положительное число, превышающее или равное 1;
либо каталитическая система, где активатор отвечает формуле
[L'H]+[(C2B9H11)2Co]-
где L' - нейтральное основание Льюиса;
H - атом водорода;
[L'H] - кислота Бренстеда.

Объектом настоящего изобретения является композиция, используемая для полимеризации олефинов, содержащая катион соединения переходного металла и анион активатора, отвечающая формуле

где
M представляет цирконий, гафний или титан, и находится в состоянии высшей степени окисления (4+, d0-комплекс);
(C5H5-y-xRxx) представляет циклопентадиенильное кольцо, замещенное 0-5 группами R, x представляет 0,1,2,3,4 или 5, обозначая степень замещения, а каждая замещающая группа R представляет независимо радикал, выбранный из группы, состоящей из гидрокарбильных радикалов C1-C20, замещенных гидрокарбильных радикалов C1-C20, где один или более атомов водорода замещены атомами галогена, гидрокарбилзамещенных металлоидных радикалов C1-C20, где металлоид выбран из группы IVA Периодической таблицы элементов, и галогенов, либо (C5H5-y-xRx) представляет циклопентадиенильное кольцо, в котором две смежные R-группы вместе образуют циклы C4-C20 для получения полициклического циклопентадиенильного лиганда;
(JR1z-1-y) представляет гетероатомный лиганд, в котором J элемент с координационным числом 3 из группы VA или элемент с координационным числом 2 из группы VIA Периодической таблицы элементов, и каждое R1 представляет независимо радикал, выбранный из группы, состоящей из гидрокарбильных радикалов C1-C20, замещенных C1-C20- гидрокарбильных радикалов, в которых один или более атомов водорода замещены атомом галогена, а z - координационное число элемента J;
каждый из Q может представлять независимо от других атом водорода, С150- гидрокарбильные радикалы, замещенные гидрокарбильные радикалы, в которых один или несколько атомов водорода замещены электроноакцепторной группой, например, атомом галогена, или алкоксигруппой, либо C1-C50-гидрокарбилзамещенные металлоидные радикалы, в которых металлоид выбран из группы IVA Периодической таблицы элементов при условии, что, когда любое Q - гидрокарбил, то такое Q отличается от (C5H5-y-xR5), или оба Q вместе могут быть алкилиденом, олефином, ацетиленом или циклометаллагидрокарбила;
y=0 или 1; когда y=1, B - ковалентно связанная мостиковая группа, включающая элемент группы IVA или группы VA;
L - нейтральное основание Льюиса;
w - число от 0 до 3;
{ A] - - лабильный объемный анион, который представляет собой простой координационный комплекс, имеющий множество липофильных радикалов, образующих ковалентную координационную связь и защищающих центральный, несущий заряд атом металла или металлоида, либо анионный комплекс, содержащий множество атомов бора.

Предпочтительно, чтобы группа [A]- отвечала нижеследующей общей формуле
[(M')m+Q1Q2...Qn]d-
где
M' - металл или металлоид, выбранный из групп с VB по VA Периодической таблицы элементов, то есть групп VB, VIB, VIIB, VIIIB, IB, IIB, IIIA, IVA и VA;
значения каждого из символов с Q1 по Qn выбирают независимо от других из класса, который охватывает водород, диалкиламидо-, алкоксид- и арилоксидные группы, гидрокарбильные и замещенные гидрокарбильные радикалы, а также органометаллоидные радикалы, причем любой один, но не более чем один, из остатков с Q1 по Qn может обозначать галоген, а значения остальных символов с Q1 по Qn независимо от других выбирают из вышеперечисленных радикалов;
m - целое положительное число от 1 до 7;
n - целое положительное число от 2 до 8;
n-m = d; либо группа [A]- отвечает нижеследующим общим формулам
[(CX)a(M X)mXb]c-
[[[(CX3)a'(M''X4)m' (X5)b']c-]2Mn+]d-
где
C - углеродный атом;
M'' - атом бора или фосфора;
каждый из X, X', X'', X3, X4 и X5 - радикал, выбираемый независимо от других из класса, который охватывает атомы водорода, галогениды, гидрокарбильные радикалы, каждый из которых содержит от 1 до 20 углеродных атомов, замещенные гидрокарбильные радикалы, где один или несколько водородных атомов замещены атомами галогена, и содержащие по 1-20 углеродных атомов, органометаллоидные радикалы, у которых каждый гидрокарбильный заместитель в органической части содержит от 1 до 20 углеродных атомов, а указанный металл выбирают из группы IVA Периодической таблицы элементов;
M - атом переходного металла;
каждый из a и b - целое положительное число, превышающее 0;
x - целое положительное число;
a+b+c - целое положительное четное число приблизительно от 2 до 8;
m - целое положительное число от 5 до 22;
каждый из a' и b', которые могут быть как идентичными, так и различными, превышает 0;
c' - целое положительное число, превышающее 2;
a'+b'+c' - целое положительное четное число приблизительно от 4 до 8;
m' - целое положительное число от 6 до 12;
n - такое целое положительное число, что 2c'-n = d, а d - целое положительное число, превышающее или равное 1.

Предпочтительно, чтобы группа [A]- отвечала формуле
B(C6F5)-4 ,
либо формуле
[C2B9H11)2Co]-.

Как правило, используемая для полимеризации олефинов композиция, содержащая катион соединения переходного металла и анион активатора, отвечает формуле

или
.

Компонент переходного металла IVB каталитической системы на основе моноциклопентадиенила представлен общей формулой

где
M - Zr, Hf или Ti и находится в состоянии высшей степени окисления (4+, d0 комплекс);
(C5H5-y-xRx)-циклопентадиенильное кольцо, которое замещено от 0 до 5 группами R, x = 0,1,2,3,4 или 5, обозначающие степень замещения, причем каждая группа R представляет собой независимо радикал, выбранный из группы, состоящей из C1-C20- гидрокарбильных радикалов, где один или несколько атомов водорода замещены атомом галогена, С120- гидрокарбилзамещенных металлоидных радикалов, где металлоид выбран из группы металлов IVA Периодической таблицы элементов, и галогенов; или (C5H5-y-xRx)- циклопентадиенильное кольцо, в котором две смежные группы R вместе образуют C4-C20 циклы для получения полициклического циклопентадиенильного лиганда, как, например, производные индена и флуорена;
- гетероатомный лиганд, в котором J - элемент с координационным числом 3 из группы VA или элемент с координационным числом 2 из группы UIA Периодической таблицы элементов, предпочтительно азот, фосфор, кислород или сера, а каждый R' - независимо радикал, выбранный из группы, состоящей из С120- гидрокарбильных радикалов, замещенных C1-C20- гидрокарбильных радикалов, где один или несколько атомов водорода замещен атомом галогена, а z - координационное число элемента J;
каждое Q может быть независимо атомом водорода, С150-гидрокарбильными радикалами, замещенными гидрокарбильными радикалами, в которых один или несколько атомов водорода замещен электроноакцепторной группой, например, атомом галогена или алкоксидный радикал или C1-C50- гидрокарбилзамещенные металлоидные радикалы, где металлоид выбран из группы IVA Периодической таблицы элементов при условии, что если любое Q - гидрокарбил, то такое Q отличается от (C5H5-y-xRx), либо оба Q вместе могут быть алкилиденом, олефином, ацетиленом или циклометаллагидрокарбилом;
y - 0 или 1; когда y=1;
B - ковалентная мостиковая группа, содержащая элемент из группы IVA или группы VA, например диалкил-, алкарил- или диарилсилил или германил, алкил или арилфосфиновый или аминовый радикал, либо гидрокарбильный радикал, например, метилен, этилен и т.п.;
L - нейтральное основание Льюиса, например диэтиловый эфир, тетрагидрофуран, диметиланилин, анилин, триметилфосфин, н-бутиламин и т.п.;
w - число от 0 до 3;
L может быть также вторым соединением переходного металла одного типа, при этом центры двух металлов M и M' соединяются мостиковой группой Q и Q', где M' имеет одно значение с M, а Q' имеют одно значение с Q. Такие соединения представлены формулой

Второй компонент представляет собой ионообменное соединение, содержащее катион, который необратимо вступает в реакцию c по меньшей мере одним лигандом, содержащимся в соединении металлов группы IVB, и некоординационный анион, являющийся объемным, лабильным и стабильным. При соединении первого и второго компонентов катион второго компонента вступает в реакцию с одним из лигандов первого компонента, образуя ионную пару, содержащую катион металла группы IVB с формальным координационным числом 3 и валентностью 4+, и упомянутый анион, совместимый и являющийся некоординационным по отношению к катиону металла, образованному из первого компонента. Приведенные в качестве иллюстрации, но не являющиеся ограничительными, примеры катионов второго компонента включают в себя кислоты Бренстеда, как, например, ионы аммония или восстанавливаемые кислоты Льюиса, как, например, ионы Ag+ или ферроцена. Анион второго соединения должен быть способен стабилизировать комплекс катионов металла группы IVB без ухудшения способности катиона металла группы IVB или продукта его разложения функционировать в качестве катализатора, кроме того, должен быть достаточно лабильным для замещения олефином, диолефином или ацетилен-ненасыщенным мономером во время полимеризации.

Каталитическую систему согласно изобретению можно получить, если "компонент переходного металла группы IVB'' и ионообменный компонент поместить в общий раствор из обычно жидкого алканового или ароматического растворителя, который пригоден для применения в качестве растворителя для жидкофазной полимеризации олефинового мономера. Соответствующие катализаторы можно также приготовить путем реакций соответствующих компонентов и адсорбции на соответствующей подложке (также как, например, неорганические окиси или полимеры), либо реакций этих компонентов на такой подложке.

Типичный способ полимеризации согласно изобретению, например, полимеризации или сополимеризации этилена, заключается в стадии контактирования одного этилена, либо с другими ненасыщенными мономерами, включая C3- C20- олефины, C5-C20- диолефины и/или одними ацетиленненасыщенными мономерами, либо в совокупности с другими олефинами и/или другими ненасыщенными мономерами, с катализатором, содержащим в соответствующем растворителе для полимеризации упомянутое соединения переходного металла группы IVB; и компонент ионообменного активатора в таком количестве, чтобы обеспечить отношение переходного металла к активатору примерно от 1:10 до 200:1 или более, и проведение реакции такого мономера в присутствии указанной каталитической системы при температуре примерно от - 100oC до 300oC в течение примерно от 1 с до 10 ч для получения полиолефина, имеющего среднюю молекулярную массу примерно 1000 или менее, чем 5000000 или более с распределением молекулярной массы примерно 1,5 или более.

Система ионного катализатора - Общая методика.

Способ согласно данному изобретению осуществляется обычно с группой катализаторов, которые приготовлены комбинированием по меньшей мере двух компонентов. Первый из них представляет собой производное моноциклопентадиенила и металла группы IVB, содержащего по меньшей мере один лиганд, который будет соединяться со вторым компонентом или по меньшей мере с его частью, например катионной частью. Второй компонент представляет собой ионообменное соединение, содержащее катион, который необратимо вступает в реакцию с по меньшей мере одним лигандом, содержащимся в соединении металлов группы IVB, и некоординационный анион, являющийся объемным, лабильным и стабильным. При соединении первого и второго компонентов катион второго компонента вступает в реакцию с одним из лигандов первого компонента, образуя ионную пару, состоящую из катиона металлов группы IVB с общим координационным числом 3 и валентностью 4+, и упомянутого аниона, совместимого и некоординационного по отношению к катиону металла, образованному из первого компонента. Анион второго соединения должен быть способен стабилизировать комплекс катиона металлов группы IVB без ухудшения способности катиона металлов группы IVB или продукта его разложения функционировать в качестве катализатора, при этом он должен быть достаточно лабильным для замещения олефином, диолефином или ацетилен-ненасыщенным мономером во время полимеризации.

А. Компонент катализатора.

Компонент A каталитической системы, содержащей переходный металл группы IVB, представлен общей формулой
,
в которой значения групп и радикалов указаны выше.

Примеры группы B, которые пригодны в качестве замещающей группы компонента каталитической системы на основе переходного металла группы IV, указаны в колонке 1 таблицы I, озаглавленной "B".

В том случае, когда L может быть также вторым соединением переходного металла одного типа, и центры двух металлов M и M' соединены мостиковой связью Q и Q', и где M' имеет то же значение, как и M, а Q' имеет то же значение, как и Q, соединения представлены формулой

Примерами гидрокарбильных раликалов для Q являются метил, этил, пропил, бутил, амил, изоамил, гексил, изобутил, гептил, октил, нонил, децил, цетил, 2-этилгексил, фенил и тому подобные, причем метил предпочтителен. Типичные замещенные гидрокарбильные радикалы включают в себя трифторметил, пентафторфенил, триметилсилилметил и триметоксисилилметил и тому подобные. Типичные гидрокарбильные замещенные металлоидные радикалы включают в себя триметилсилил, триметилгермил, трифенилсилил и тому подобные. Типичные алкилдиеновые радикалы для обоих Q вместе - метилиден, этилиден и пропилиден. Примеры группы Q, которая пригодна в качестве замещающей группы или элемента компонента системы катализатора на основе переходного металла группы IVB, указаны в колонке 4 таблицы I, озаглавленной "Q".

Соответствующие гидрокарбильные и замещенные гидрокарбильные радикалы, которые могут быть замещены по крайней мере группой R в циклопентадиениловом кольце, будут содержать от 1 до примерно 20 атомов углерода и включать в себя алкиловые радикалы неразветвленной и разветвленной цепи, циклические углеводородные радикалы, алкилзамещенные циклические углеводородные радикалы, ароматические радикалы и алкилзамещенные ароматические радикалы. Соответствующие органометаллические радикалы, которые могут быть замещены группой R в циклопентадиениловом кольце, включают в себя триметилсилил, триэтилсилил, этилдиметилсилил, метилдиэтилсилил, трифенилгермил, триметилгермил и тому подобные.

Примеры циклопенталиенильных циклических групп формулы (C5H5-y-xRx), которые приемлемы в качестве составляющих групп компонента каталитической системы с переходным металлом группы IVB, идентифицированы в колонке 2 таблицы I под заголовком "(C5H5-y-xRx)".

Соответствующие гидрокарбильные и замещенные гидрокарбильные радикалы, в которых по крайней мере один атом водорода может быть замещен группой R' в гетероатомном лиганде J, будут содержать от 1 до примерно 20 атомов углерода и включать в себя неразветвленные и разветвленные алкильные радикалы, циклические углеводородные радикалы, алкилзамещенные циклические углеводородные радикалы, ароматические радикалы и алкилзамещенные ароматические радикалы. Примеры групп гетероатомного лиганда которые пригодны в качестве замещающей группы компонента переходного металла группы IVB в системе катализатора, указаны в колонке 3 таблицы I, озаглавленной
Таблица I иллюстрирует типичные представители остатков "компонента A с переходным металлом группы IVB", причем этот список приведен исключительно с иллюстративными целями, поэтому его ни в коем случае нельзя рассматривать как исчерпывающий. Ряд конечных компонентов можно получить путем подбора всех возможных сочетаний различных остатков из указанных групп в формуле. Иллюстрирующими примерами служат нижеследующие соединения диметилсилилтетраметилциклопентадиенил-трет. бутиламидоцирконийдиметил, диметилсилилтетраметилциклопентадиенил-трет. бутиламидогафнийдиэтил, диметилсилил-трет. бутилциклопентадиенил-трет. бутиламидоцирконийдигидрид, диметилсилил-трет.бутилциклопентадиенил-трет. бутиламидогафнийдифенил, диметилсилилтриметилсилилциклопентадиенил-трет. бутиламидоцирконийдигидрид, диметилсилилтетраметилциклопентадиенилфениламидотитанийдиметил, диметилсилилтетраметилциклопентадиенилфениламидогафнийдитолил, метилфенилсилилтетраметилциклопентадиенил-трет. бутиламидоцирконийдигидрид, метилфенилсилилтетраметилциклопентадиенил-трет. бутиламидогафнийдиметил, диметилсилилфлуоренилциклогексиламедтитанийдиметил, дифенилгермилинденил-трет. бутилфосфидодигидрид, метилфенилсилилтетраметилциклопентадиенил-трет. бутиламидогафнийдиметил, диметилсилилтетраметилциклопентадиенил-п-н. бутилфениламидоцирконийдигидрид, диметилсилилтетраметилциклопентадиенил-п-н.бутилфениламидогафнийдитриметилсилил.

Для иллюстрации указанные в таблице I соединения не включают в себя лиганд (L) нейтрального основания Льюиса. Условия, при которых комплексные соединения содержат лиганды нейтрального основания Льюиса, например, простой эфир, или те, которые образуют димеры, определяются стерическим объемом лигандов вокруг металла. Аналогично, из-за меньшего стерического объема группы триметилсилилциклопентадиенила в соединении

по сравнению с группой тетраметилциклопентадиенила в соединении

первое соединение является димерным, а последнее нет.

Обычно предпочитают разновидности соединения (y=1) с мостиковой связью переходного металла группы IVB. Предпочтительным способом получения этих соединений является реакция соединения циклопентадиениллития с дигалоидным соединением, в результате которой выделяется соль галогенид лития, и моногалозаместитель становится ковалентно связанным с соединением циклопентадиенила. Затем продукт реакции замещенного циклопентадиенила вступает в реакцию с литиевой солью фосфида, окисида, сульфида или амида (например, литийамид), после чего галоид моно-галоидного продукта реакции вступает в реакцию с выделением соли галогенида лития, и аминогруппа из соли литийамида ковалентно связывается с остатком продукта реакции циклопентадиенила. Затем полученное производное аминоциклопентадиенила вступает в реакцию с алкиллитием, в результате которой активные атомы водорода на атоме углерода циклопентадиенила и на атоме азота амино группы, ковалентно связанного с замещающей группой, вступают в реакцию с алкилом алкиллития с выделением алкана и образованием дилитиевой соли циклопентадиенилового соединения. Затем получают различные соединения с мостиковой связью переходного металла группы IVB в результате реакции длительной соли циклопентадиенила и переходного металла группы IVB, предпочтительно с галоидным соединением переходного металла группы IVB. В результате этого превращения получают дихлорпроизводное моноциклопентадиениламидосоединения группы IVB. Затем комплексное соединение дихлорида превращают в соответствующее гидрокарбильное производное с использованием соответствующей соли Гриньяра, лития, натрия или калия гидрокарбильного лиганда. Применяемые способы аналогичны тем, которые разработаны для алкилирования сложных металлоценовых соединений группы IVB (то есть бисциклопентадиенильных систем).

Различные соединения переходного металла группы IVB без мостиковой связи можно получить реакцией соединения циклопентадиениллития и соли лития с амином с галоидсоединением переходного металла группы IVB.

Соответствующие соединения переходных металлов группы IVB, которые можно использовать в каталитический системе согласно изобретению, включают в себя различные соединения с мостиковой связью (y=1), где мостиковая связь группы B представляет диалкил-, диарил- или алкиларилсилан, либо метилен или этилен. Примерами более предпочтительных типов соединений переходных металлов группы IVB с мостиковой связью являются соединения с мостиковой связью диметилсилил, метилфенилсилил, диэтилсилил, этилфенилсилил, дифенилсилил, этилен или метилен. Наиболее предпочтительными типами соединений с мостиковой связью являются соединения с диметилсилилом, диэтилсилилом и метилфенилсилилом.

Соответствующими соединениями переходных металлов группы IVB без мостиковой связи (y=0), которые можно использовать в каталитических системах согласно изобретению, являются пентаметилциклопентадиенил-ди-терт.бутилфосфинодиметилгафний, пентаметилциклопентадиенил-ди-трет. -бутилфосфинометилэтилгафний, циклопентадиенил-2-метилбутоксидиметил-титан.

Для иллюстрации компонента A переходного металла группы IVB выберем любую комбинацию разновидностей в таблице I. Примером типа соединения с мостиковой связью может быть диметилсилилциклопентадиенил-трет.бутиламидодиметилцирконий; примером соединения без мостиковой связи - циклопентадиенил-дитрет.бутиламидоцирконийдигидрид.

B. Компонент B-активатор.

Соединения, которые можно применять в качестве компонента B-активатора при приготовлении катализатора согласно изобретению, содержат катион, которым может быть кислота Бренстеда, способная отдавать протон, и совместимый некоординационный анион, причем анион является относительно большим (объемным), способным стабилизировать активные компоненты катализатора (катион группы IVB), который образуется, когда связываются два соединения, причем анион должен быть достаточно лабильным для замещения олефиновыми, диолефиновыми и ацетиленненасыщенными основаниями или другими нейтральными основаниями Льюиса, как, например, простые эфиры, нитрилы и тому подобное. Два класса совместимых некоординационных анионов раскрыты в Европейских заявках 277003 и 277004 заявителя:
1) анионные координационные сложные соединения, содержащие множество липофильных групп, ковалентно координированных и защищающих центральный металл, несущий заряд или ядро металлоида, и
2) анионы, содержащие несколько атомов бора, например, карбораны, металлокарбораны и бораны.

В основном, активаторы, содержащие простые анионные координационные комплексы, которые можно использовать согласно изобретению, могут быть представлены следующей общей формулой 5.

[L'-H)+]d[M')m+Q1Q2... Qn]d-
где значения групп и радикалов указаны выше.

Как было указано выше, может быть использован любой металл или металлоид, способные образовывать анионное комплексное соединение, устойчивое в воде, или содержащиеся в анионе другого соединения. Соответствующие металлы включают в себя, без ограничения, бор, фосфор, кремний и тому подобные. Соединения, содержащие анионы, которые представляют собой координационные комплексы, содержащие один атом металла или металлоида, являются, что совершенно очевидно, хорошо известными, и многие соединения, в частности такие, которые содержат единственный атом бора в анодной части, технически доступны. В свете сказанного предпочтительны соли, молекулы которых снабжены анионами, включающими в себя координационный комплекс, содержащий единственный атом бора.

Предпочтительные активаторы, молекулы которых включают в себя бор, могут отвечать нижеследующей общей формуле 5A.

[L'-H]+ [BAr1Ar2X3X4]-
где
L' - нейтральное основание Льюиса;
H - атом водорода;
[L' - H]+ -кислота Бренстеда;
B - атом бора в трехвалентном состоянии;
каждый из Ar1 и Ar2, которые могут быть как идентичными, так и различными, обозначает ароматический или замещенный ароматический углеводородный радикал, содержащий от 6 до 20 углеродных атомов, причем эти радикалы могут быть связаны между собой посредством стабильной мостиковой группы;
X3 и X4 - радикалы, выбираемые независимо друг от друга из класса, который включает атомы водорода, галогениды, при условии, что X3 и X4 одновременно не являются галогенидами, гидрокарбильные радикалы, каждый из которых содержит от 1 до 20 углеродных атомов, замещенные гидрокарбильные радикалы, в которых один или несколько водородных атомов замещены атомами галогена, содержащие по 1-20 углеродных атомов, замещенные гидрокарбилом атомы металлов (металлоидорганические радикалы), у которых каждый гидрокарбильный заместитель содержит от 1 до 20 углеродных атомов и указанный металл выбирают из группы IVA Периодический таблицы элементов, и тому подобное.

Обычно каждый из Ar1 и Ar2 независимо друг от друга может обозначать любой ароматический или замещенный ароматический углеводородный радикал, содержащий от 6 до 20 углеродных атомов. К приемлемым ароматическим радикалам относятся фенил, нафтил и антраценил, хотя ими их перечень не ограничивается. Примерами подходящих заместителей в замещенных ароматических радикалах служат гидрокарбильные, органометаллоидные, алкокси, алкиламиногруппы, атомы фтора и фторгидрокарбильные радикалы и тому подобное, в частности те значения, которые могут быть использованы в качестве радикалов X3 и X4, однако ими их перечень не ограничивается. Заместители могут находиться в орто-, мета- и пара-положении относительно углеродных атомов, связанных в атомом бора. В том случае, когда один из радикалов X3 и X4 или оба они являются гидрокарбильными радикалами, каждый из этих радикалов, которые могут быть как идентичными, так и различными, может представлять собой ароматический или замещенный ароматический радикал, в частности такой, который обозначен символом Ar1 и Ar2, или же может являться прямым или разветвленным алкильным, алкенильным или алкинильным радикалом, содержащим от 1 до 20 углеродных атомов, циклическим углеводородным радикалом, содержащим от 5 до 8 углеродных атомов, или алкилзамещенным циклическим углеводородным радикалом, содержащим от 6 до 20 углеродных атомов. X3 и X4 также независимо друг от друга могут представлять собой алкокси- или диалкиламиногруппы, где алкильная часть указанных алкокси- и диалкиламиногрупп содержит от 1 до 20 углеродных атомов, гидрокарбильные радикалы и органометаллоидные радикалы, каждый из которых содержит от 1 до 20 углеродных атомов, и тому подобное. Как указано выше, радикалы Ar1 и Ar2 могут быть связаны между собой. Аналогично любой из радикалов Ar1 и Ar2 или же они оба могут быть связаны с любым из радикалов X3 и X4. Наконец радикалы X3 и X4 также могут быть связаны между собой посредством соответствующей мостиковой группы.

Неограничивающими примерами соединений бора, которые могут быть использованы в качестве активатора при получении усовершенствованных катализаторов настоящего изобретения, являются триалкилзамещенные аммониевые соли, в частности, триэтиламмонийтетра(фенил)бор, трипропиламмонийтетра(фенил)бор, три(н-бутил)аммонийтетра(фенил)бор, триметиламмонийтетра(п-толил)бор, триметиламмонийтетра(о-толил)бор, трибутиламмонийтетра(пентафторфенил) бор, трипропиламмонийтетра(о-, п- диметилфенил)бор, трибутиламмонийтетра(м-, м-диметилфенил)бор, трибутиламмонийтетра(п-трифторметилфенил)бор, три(н-бутил)аммонийтетра(о-толил)бор и тому подобное; N,N-диалкиланилиниевые соли, в частности, N, N-диметиланилинийтетра(пентафторфенил)бор, N,N-диэтиланилинийтетра(фенил)бор, N, N-2,4,6-пентаметиланилинийтетра(фенил)бор и тому подобное; диалкиламмониевые соли, в частности ди(изопропил)аммонийтетра(пентафторфенил)бор, дициклогексиламмоний-тетра(фенил)бор и тому подобное; а также триарилфосфониевые соли, в частности, трифенилфосфонийтетра(фенил)бор, три(метилфенил)фосфонийтетра(фенил)бор, три(диметилфенил)фосфонийтетра(фенил)бор и тому подобное.

Указанный перечень можно продолжить другими аналогичными соединениями, молекулы которых содержат другие металлы и металлоиды и которые могут быть использованы в качестве активаторов, но в этом нет необходимости. Следует отметить, что вышеприведенный перечень нельзя рассматривать как исчерпывающий, поскольку для любого специалиста в данной области совершенно очевидно, что вышеприведенные общие формулы охватывают также и другие приемлемые соединения бора, а также соединения, молекулы которых содержат другие металлы и металлоиды.

Активаторы, содержащие несколько атомов бора, могут быть представлены нижеследующими общими формулами 6 и 7:
[L- H]c[(CX)a(M X)mXb]c-,
[L'-H]d[[[(CX3)a', (M''X4)m'(X5)b']c-]2 Mn+]d-;
в которых значения групп и радикалов указаны выше.

Для иллюстрации, но не ограничения примерами вторых компонентов, которые можно использовать для приготовления систем катализатора, применяемых в способе согласно изобретению, в которых анион второго компонента содержит множество атомов металлоида (как в формулах 5 и 6), являются соли аммония, например аммоний-1-карбадодекаборат (где 1-карбадодекаборат применяют только для иллюстрации, а не ограничения, как противоиона для перечисленных ниже катионов аммония); соли моногидрокарбил-замещенного аммония, например, метиламмоний-1-карбадодекаборат, этилламоний-1-карбадодекаборат, пропиламмоний-1-карбадодекаборат, изопропиламмоний-1-карбадодекаборат, (н-бутил)аммоний-1-карбадодекаборат, анилиний-1-карбадодекаборат и (п-толил)аммоний-1-карбадодекаборат и тому подобное; соли дигидрокарбилзамещенного аммония, например диметиламмоний-1-карбадодекаборат, диэтиламмоний-1-карбадодекаборат, дипропиламмоний-1-карбадодекаборат, диизопропиламмоний-1-карбадодекаборат, ди(н-бутил)аммоний-1-карбадодекаборат, дифениламмоний-1-карбадодекаборат, ди(п-толил)аммоний-1-карбадодекаборат и тому подобное; соли тригидрокарбилзамещенного аммония, например триметиламмоний-1-карбододекаборат, триэтиламмоний-1-карбододекаборат, трипропиламмоний-1-карбододекаборат, три(н-бутил)аммоний-1-карбододекаборат, трифениламмоний-1-карбододекаборат, три(п-толил)аммоний-1-карбододекаборат, N,N-диметиланилиний-1-карбадодекаборат, N,N-диэтиланилиний-1-карбадодекаборат и тому подобное.

Иллюстрирующими, но не ограничивающими примерами вторых соединений, соответствующих формуле 5 [где (н-бутил)аммоний применяют для иллюстрации, а не ограничения в качестве противоиона для перечисленных ниже анионов] являются соли анионов, например, бис[три(н-бутил)аммоний]нонаборат, бис[три(н-бутил)аммоний] декаборат, бис[три(н-бутил)аммоний] ундекаборат, бис[три(н-бутил)аммоний] додекаборат, бис[три(н-бутил)аммоний]декахлородекаборат, бис(три(н-бутил)аммонийдодекахлородекаборат, (три(н-бутил)аммоний-1-карбадекаборат, (три(н-бутил)аммоний-1-карбаундекаборат, (три(н-бутил)аммоний-1-карбадодекаборат, (три(н-бутил)аммоний-1-карбадекаборат, (три(н-бутил)аммоний-1-карбаундекаборат, три(н-бутил)аммоний-1-карбадодекаборат, три(н-бутил)аммоний-1-триметилсилил-1-карбадекаборат, три(н-бутил)аммонийдибром-1-карбадодекаборат и тому подобное; комплексные соединения борана и карборана и соли анионов борана и карборана, например декаборан(14), 7,8-дикарбаундекаборан(13), 2,7-дикарбаундекаборан(13), ундекагидридо-7,8-диметил-7,8-дикарбаундекаборан, додекагидро-11-метил-2,7-дикарбаундекаборан, три(н-бутил)аммонийундекаборат(14), три(н-бутил)аммоний-6-карбадекаборат(12). три(н-бутил)аммоний-7-карбаундекаборат(13), три(н-бутил)аммоний-7,8-дикарбаундекаборат(12), три(н-бутил)аммоний-2,9-дикарбаундекаборат(12), три(н-бутил)аммонийдодекагидро-8-метил-7,9-дикарбаундекаборат, три(н-бутил)аммонийундекагидро-8-этил-7,9-дикарбаундекаборат, три(н-бутил)аммонийундекагидро-8-бутил-7,9-дикарбаундекаборат, три(н-бутил)аммонийундекагидро-8-аллил-7,9-дикарбаундекаборат, три(н-бутил)аммонийундекагидро-9-триметилсилил-7,8-дикарбаудекаборат, три(н-бутил)аммонийундекагидро-4,6-дибром-7-карбаундекаборат и тому подобное; бораны и карбораны и соли боранов и карборанов, например 4-карбанонаборан(14), 1,3-дикарбононаборан(13), 6,9-дикарбадекаборан(14), додекагидро-1-фенил-1,3-дикарбанонаборан, додекагидро-1-метил-1,3-дикарбанонаборан, ундекагидро-1,3-диметил-1,3-дикарбанонаборан и тому подобное.

Иллюстративными, но не ограничивающими примерами вторых соединений, соответствующих формуле 7 [где три(н-бутил)аммоний применяют для иллюстрации, но не ограничения в качестве противоиона для перечисленных далее ионов] являются соли анионов металлакарборана и металлаборана, например три(н-бутил)аммонийбис(нонагидридо-1,3-дикарбаунаборана)кобальтат (III), три(н-бутил)аммонийбис(ундекагидридо-7,8-дикарбаундекаборато)феррат (III), три(н-бутил)аммонийбис(ундекагидридо-7,8-дикарбаундекаборато)кобальтат (III), три(н-бутил)аммонийбис(ундекагидридо-7,8-дикарбаунаборат)никелат (III), три(н-бутил)аммонийбис(нонагидридо-7,8-диметил-7,8- дикарбаундекаборато)феррат (III), три(н-бутил)аммонийбис(нонагидридо-7,8-диметил-7,8- дикарбаундекаборато)хромат (III), три(н-бутил)аммонийбис(трибромоктагидридо-7,8-дикарбаундекаборато) кобальт (III), три(н-бутил)аммонийбис(додекагидридодикарбадодекаборат)кобальт (III), трис[три(н-бутил)аммоний]бис(ундекагидридо-7-карбаундекаборато)хромат (III), бис[три(н-бутил)аммоний]бис(ундекагидридо-7-карбаундекаборато)манганат (IV), бис[три(N-бутил)аммоний] бис(ундекагидридо-7-карбаундекаборато)кобальтат (III), бис[три(н-бутил)аммоний]бис(ундекагидридо-7-карбаундекаборато)никелат (IV) и тому подобное.

В качестве примера вторых соединений, которые можно применять, следует назвать соли фосфония и замещенного фосфония, соответствующие перечисленным солям аммония и замещенного аммония.

Способ приготовления катализатора.

Каталитическая система, применяемая в способе согласно изобретению, содержит комплексное соединение, образованное при смешении соединений переходного металла группы IVB с активатором. Каталитическую систему можно приготовить путем добавления соответствующих компонентов переходного металла группы IVB и активатора в инертный растворитель, в котором можно осуществлять полимеризацию олеина способом полимеризации в растворе.

Каталитическую систему можно приготовить путем помещения соответствующего соединения переходного металла группы IVB и соответствующего активатора, при любом порядке добавления, в алкановый растворитель или растворитель из ароматического углеводорода, предпочтительно толуола. Каталитическую систему можно приготовить отдельно в виде концентрата и добавить в разбавитель для полимеризации в реакторе. Либо, если это требуется, можно приготовить компоненты каталитической системы в виде отдельных растворов и добавить в соответствующих пропорциях в разбавитель для полимеризации в реакторе, когда это удобно для осуществления непрерывной реакции полимеризации в жидкой фазе. Примерами алкановых и ароматических углеводородов, пригодных в качестве растворителей для приготовления системы катализатора и также в качестве разбавителя для полимеризации, являются, без ограничения, углеводороды с прямой и разветвленной цепью, например, изобутен, бутан, пентан, гексан, гептан, октан и т.п., циклические и алициклические углеводороды, например, циклогексан, циклопентан, метилциклогексан, метилциклопентан и т.п., и ароматические и алкилзамещенные ароматические соединения, например, бензол, толуол, ксилол и т.п. Соответствующими растворителями также могут быть жидкие олефины, которые могут являться мономерами или сомономерами, например, этилен, пропилен, бутен, 1-гексен и т.п.

Обычно оптимальные результаты достигаются в соответствии с изобретением, когда соединение переходного металла группы IVB присутствует в разбавителе для полимеризации в концентрации от примерно 0,01 до 1,0 миллимоль/литр разбавителя, а активатор присутствует в таком количестве, чтобы обеспечить молярное отношение переходного металла к компоненту активатора примерно от 1:1 до 200:1. Для обеспечения соответствующего удаления тепла из компонентов катализатора во время реакции и достижения хорошего смешения необходимо применять достаточное количество растворителя.

Ингредиенты системы катализатора, то есть компоненты переходного металла группы IVB и активатора, и разбавитель для полимеризации можно добавлять в реакционную емкость быстро или медленно. Температура, поддерживаемая во время контакта компонентов катализатора, может находиться в широком диапазоне, например, от 10o до 300oC. Можно также применять более высокую или более низкую температуру. Предпочтительно во время приготовления системы катализатора реакцию поддерживают при температуре от примерно 25o до 100oC, наиболее предпочтительно при 25oC.

Отдельные компоненты каталитической системы, а также полученная каталитическая система постоянно защищены от кислорода и влаги. Поэтому реакции осуществляют в условиях атмосферы, свободной от кислорода и влаги, а когда систему катализатора восстанавливают отдельно, то ее восстанавливают в атмосфере, свободной от кислорода и влаги. Поэтому предпочтительно осуществлять реакции в присутствии сухого инертного газа, например, гелия или азота.

Каталитическая система.

Идентификация и изучение активности
Реакцию двух компонентов катализатора можно рассматривать как простую реакцию между кислотой и основанием, в которой Q- - лиганд, связанный с центром переходного металла (CN)MQ2 (где (CN) = Cp и J - лиганды), вступает в реакцию с катионом второго компонента, который может быть кислотным [L'H+] [A] - (где A- - некоординационный анион), для получения ионного катализатора [(CN)MQ+][A]- и нейтральных бипродуктов Q-H и L'. Общая каталитическая активность катализатора зависит от выбора металла, конкретной группы (CN) - лиганда, структуры и стабильности A- и способности катиона или основания Льюиса L' образовывать координационную связь. Для обычных случаев, где требуется катализатор для обеспечения высокой производительности при гомополимеризации или статистической сополимеризации, в качестве катиона применяют донор протона, а Q - лиганд компонента переходного металла выбирают таким образом, что: 1) комплексное соединение металла должно получаться легко и дешево; 2) (CN)MQ2 должно быть достаточно основным, чтобы обеспечить отрыв протона от кислотного катиона компонента активатора, и 3) Q-H является нереакционноспособным радикалом, например, в случае алкана, таким образом, реакция активирования является необратимой. Для данной системы (CN) M остатки L' и A- компонента активатора "регулируют" стабильность и общие характеристики системы катализатора. Способность L' и A- изменять поведение активного центра катализатора увеличивает универсальность каталитической системы для полимеризации, и это является важным преимуществом в сравнении с обычными способами активирования (например, сокатализатор метилалюмоксан и другие алюминийалкильные сокатализаторы).

В основном, хотя большинство указанных переходных металлов можно применять в комбинации с большинством упомянутых активаторов для получения активной каталитической системы для полимеризации олефинов, однако для обеспечения непрерывности стадий полимеризации важно, чтобы любой катион металла, полученный сначала из первого компонента или продукта его разложения, был относительно устойчивым. Также важно, чтобы анион активатора был устойчивым к гидролизу, когда применяют соль аммония. Также важно, чтобы положительный заряд активатора был достаточным по отношению к металлу для упрощения переноса необходимого катиона, например, протона. Соединения активатора, содержащие соли арил-аммония, например N, N-диметиланилин, являются более кислыми, чем соли триалкиламмония, и поэтому их можно применять с различными переходными металлами. Основность комплексного соединения металла также должна быть достаточной для упрощения переноса требуемого протона. В общем можно считать, что соединения переходных металлов, которые можно гидролизовать водными растворами, являются пригодными в качестве металлоценовых компонентов для приготовления указанной каталитической системы.

Что касается комбинации компонента переходного металла с компонентом активатора для получения каталитической системы в соответствии с изобретением, то следует отметить, что необходимо выбрать такие замещенные два соединения для приготовления активного катализатора, чтобы исключить перенос части аниона в катион металла и тем самым исключить образование неактивных типов катализаторов. Это можно осуществить при пространственном затруднении с помощью заместителей на Cp и/или J-лизандах первого компонента, а также заместителей на некоординационном анионе.

Когда количество и объем заместителей на компонентах переходного металла уменьшают, то получают более эффективные катализаторы с активатором, содержащим некоординационные анионы, которые больше по размеру и более устойчивы к разложению. В случае, если некоординационным анионом является анионное координационное комплексное соединение, например производное тетрафенилбора, то для исключения переноса протона или всей фенильной группы из аниона к металлу можно использовать заместители на фенильных кольцах. Это может достигаться посредством алкилирования, в ортоположениях фенильных групп или лучше перфторированием аниона Таким образом, анионные координационные комплексные соединения, содержащие перфторфенил, трифторметилфенил- или бис-трифторметилфенильные кольца, являются предпочтительными для этого подвида компонентов активатора. Когда некоординационный анион содержит множество атомов бора, соответствующих общим формулам 6 и 7, то более эффективные катализаторы получают с активатором, содержащим большие анионы, например те, которые показаны в уравнении 7, и те, которые имеют большие значения m в уравнении 6. В этих случаях также предпочтительно, если применяют вторые соединения, которые описаны в уравнении 6, чтобы a + b + c = 2. Вторые соединения, в которых a + b + c равно четным числам от 4 или больше, имеют кислотные B-H-B доли, которые могут также вступать в реакцию с образующимся катионом металла и образовывать каталитически неактивные соединения.

Было исследовано несколько новых композиций с использованием ЯМР-спектроскопии в поле высокой напряженности. В результате реакции между Me2Si(Me4C5)(N-t-Bu)ZrMe2 и [DMAH] [B(pfp)4] (где DMAH = PhMe2NH+ и pfp = C6F5) в d8-толуоле, получают систему, состоящую из двух фаз. Верхний слой состоит главным образом из d8-толуола только с очень незначительным количеством присутствующего ДМА (ДМА - PhNMe2). Нижний слой содержит ионный катализатор и d8-толуол. Спектр ЯМР в поле высокой напряженности 13C нижнего слоя показывает, что реакция протекает таким образом, что образуется ДМА-аддукт с DMA, как показано ниже.


Данные ЯМР четко показывают, что амин действительно образует координационную смесь с атомом циркония, но, что он свободно вращаемый и, вероятно, имеет два координационных центра по всей вероятности в виде подвижных изомеров. Типы ионных катализаторов можно перекристаллизовать при -40oC для получения бледного порошка. Спектр ЯМР этого продукта в твердом состоянии показал координационную связь амина с атомом циркония с ориентацией больше, чем одна. Добавка d8-thf (thf - тетрагидрофуран) в раствор или к твердому продукту катализатора приводит к образованию d8-thf аддукта, [Me2Si(Me4C5)(N-t-Bu)ZrMe(d8-thfx] [B(pfp)4] и свободного ДМА. Это следовало ожидать, поскольку d8-thf более сильное основание, чем ДМА.

Были также исследованы ионообменные активаторы с различной основностью. Амин, который является более сильным основанием, чем ДМА, например, ДМТ (Me2N-p-Me-Ph), обеспечивает полную координационную связь с атомом циркония без вращения. Этот катализатор был получен по реакции [DMTH][B(pfp)4] с Me2Si(Me4C5)(N-t-Bu)ZrMe2. Спектр ЯМР13C раствора катализатора показал очень незначительное, если вообще имеется, присутствие свободного ДМТ. Применение [Bu3NH] [B(pfp)4] в качестве активатора дало возможность получить более интересный результат. По-видимому, когда [n-Bu3NH][B(pfp)4] вступает в реакцию с Me2Si(Me4C5)(N-t-Bu)ZrMe2, амин не координируется с атомом циркония, как показано в уравнении

То, что амин не координируется с металлом, доказывает тот факт, что химический сдвиг сигналов амина не изменяется от свободного амина. С точки зрения электронной теории можно предсказать, что Bu3N будет лучшим лигандом для центра катионного металла, чем ДМА. Обратное положение в этой системе, и это указывает на то, что пространственные силы доминируют над химией координирования. Наблюдение за двумя сигналами Cp-метила и одним сигналом Me2Si наводит на мысль, что катион представляет собой симметричный трехкоординационный катион и что анион и аминовый лиганд не координируются сильно с металлом, чтобы разрушить плоскость симметрии через металл, Ср - центроид и атом кремния.

Также изучали реакцию Me2Si(Me4C5)(N-t-Bu)ZrMe2 с [DMAH][C2B9H11)2Co] с помощью ЯМР-спектроскопии в поле высокой напряженности. В этом случае амин, ДМА не образует координационной связи с металлом. Тот факт, что были отмечены четыре сигнала Cp-метила и два сигнала Me2Si в спектре 13C-ЯМР, наводит на мысль, что металлокарборан образует координационную связь с центром металла. Это согласуется с его высокой растворимостью и низкой активностью по отношению к системе B(pfp)-4 .
Способ полимеризации.

В предпочтительном варианте способа согласно изобретению каталитическую систему применяют для полимеризации в жидкой фазе олефинового мономера. Способ полимеризации в жидкой фазе включает в себя стадии контактирования олефинового мономера с каталитической системой в соответствующем разбавителе для полимеризации в присутствии каталитической системы и при достаточной температуре для получения полиолефина.

Мономер для такого способа может содержать только этилен для производства гомополиэтилена, либо этилен в сочетании с -олефином, имеющим 3-18 атомов углерода, для производства сополимера этилен --олефин. Условиями наиболее предпочтительными для гомо- или сополимеризации этилена являются те, при которых этилен подают в зону реакции под давлением от примерно 0,019 фунта/дюйм2 до 50000 фунт/дюйм2, а температуру реакции поддерживают в интервале примерно от -100oC до 300oC, предпочтительно от -10 до 220oC. Мольное отношение компонента переходного металла к компоненту активатора составляет предпочтительно примерно от 1:1 до 200:1. Время реакции составляет обычно от 1 с до 1 ч.

Примером осуществления, не ограничивающим объем изобретения одним средством, является следующее: в емкость реактора с перемешиванием вводят жидкий мономер 1-бутен. Систему катализатора вводят через сопла в паровой или жидкой фазе, либо ее разбрызгивают известным образом в жидкую фазу. Реактор содержит жидкую фазу, состоящую по существу из жидкого 1-бутена вместе с растворенным газообразным этиленом, и паровую фазу, содержащую пары всех мономеров. Температуру и давление в реакторе можно регулировать посредством орошения испаряющегося мономера -олефина (самопроизвольное охлаждение), а также при помощи охлаждающих змеевиков, рубашек и т.п. Скорость полимеризации регулируют в зависимости от скорости добавки катализатора или концентрации катализатора. Содержание этилена в полимерном продукте определяют по отношению содержания этилена к 1-бутену в реакторе, которое регулируют посредством регулирования скорости подачи этих компонентов в реактор.

Примеры.

В примерах, которые иллюстрируют применение изобретения, использовали аналитические методы анализа полученных полиолефиновых продуктов. Молекулярную массу полиолефиновых продуктов определяли посредством гельпроникающей хроматографии (GPC) по следующей методике. Молекулярную массу и распределение молекулярной массы измеряли гель-проникающим хроматографом Waters 150, оснащенным дифференциальным детектором показателя преломления (DRI) и фотометром Chromatix KMX-6 для измерения рассеянного света. Систему применяли при температуре 135oC с 1,2,4-трихлорбензолом в качестве подвижной фазы. Применяли колонки 802, 803, 804 и 805 Shodex (Шова Денко Америка, Инк.) с полистироловым гелем. Этот метод описан в публикации "Жидкая хроматография полимеров и родственных материалов Ш", Дж. Кэйзес, редактор, Марсель Деккер, 1981, стр. 207. Какие-либо поправки на расхождение в колонках не применяли; однако данные согласно общепринятым стандартам, например, Национального Бюро Стандартов для полиэтилена 1484 и полученные анионной гидрогенизацией полиизопренов (вариант сополимера этилен-поропилен) показали, что такие поправки на Mw/Mn (=MWD) составили меньше, чем 0,05 единиц. Mw/Mn вычисляли по времени элюирования. Числовые анализы осуществляли с применением имеющихся в продаже и изготовленных в соответствии с требованиями заказчика средств программного обеспечения Beckman/CIS LALLS в сочетании со стандартной программой, прогоняемой на компьютере HP 1000 для определения проникновения геля.

Следующие примеры предназначены для иллюстрации конкретного осуществления изобретения, но не для ограничения объема изобретения.

Все операции осуществляли в инертной атмосфере гелия или азота. Выбор растворителя является чисто произвольным, поскольку, например, в большинстве случаев можно чередовать пентан либо петролейный эфир 30-60. Выбор между тетрагидрофураном (thf) и диэтиловым эфиром более ограничен, однако в отдельных реакциях можно применять и тот и другой. Амиды лития получили из соответствующих аминов и/или h-BuLi, либо MeLi. Известные способы получения LiHC5-Me4 описаны С.М.Фендриком и др. "Organometallics", 3, 819 (1984) и Ф. Х. Кохлером и К.Х.Доллом, Z. "Naturforsch", 376, 144 (1982). Другие литиевые соединения замещенного циклопентадиенила обычно получают из соответствующего циклопентадиенильного лиганда и BuLi или MeLi, либо посредством реакции MeLi с соответствующим растворителем. ZrCl4 и HfCl4 были приобретены у фирмы Aldrich Chemical Company или Carat. Реагенты - амины, силан и литий были приобретены у фирмы Aldrich Chemical Company или Petrarchm Sestems. Компоненты активатора получили известными способами.

Примеры.

Синтез моно-циклопентадиенильных комплексных соединений
1.
Часть 1. Me4HC5Li (10,0 г, 0,078 моль) медленно добавили в Me2SiCl2 (11,5 мл, 0,095 моль в 225 мл раствора тетрагидрофурана - thf). Раствор перемешивали в течение 1 ч для обеспечения полной реакции. Затем тетрагидрофурановый растворитель удалили с помощью вакуума в холодную ловушку, поддерживаемую при температуре -196oC. Для осаждения LiCl добавили пентан. Смесь профильтровали через цеолит. Из фильтра удалили растворитель. Me4HC5SiMe2Cl (15,34 г, 0,071 моль) извлекли в виде бледно-желтой жидкости.

Часть 2. Me4HC5SiMe2Cl (10,0 г, 0,047 моль) медленно добавили в суспензию (3,68 г, 0,047 моль в 100 мл тетрагидрофурана). Смесь перемешивали всю ночь. Затем тетрагидрофуран удалили с помощью вакуума в холодную ловушку, поддерживаемую при температуре -196oC. Добавили петролейный эфир ( 100 мл) для осаждения LiCl. Смесь профильтровали через цеолит. Из фильтрата удалили растворитель (11,14 г, 0,044 моль) выделили в виде бледно-желтой жидкости.

3. Часть (11,14 г, 0,044 моль) разбавили 100 мл Et2O. Медленно добавили MeLi (1,4 M, 64 мл, 0,090 моль). Смесь оставили для перемешивания в течение получаса после окончания добавления MeLi. Объем простого эфира уменьшили до отфильтровывания продукта. Продукт промыли несколькими небольшими порциями простого эфира, затем высушили под вакуумом.

Часть 4. (3,0 г, 0,011 моль) суспендировали в 150 мл Et2O. Медленно добавили ZrCl4 (2,65 г, 0,011 моль) и полученную смесь оставили для перемешивания в течение всей ночи. Эфир удалили с помощью вакуума в холодную ловушку, поддерживаемую при температуре -196oC. Для осаждения LiCl добавили пентан. Смесь профильтровали дважды через цеолит. Пентан значительно уменьшили в объеме. Бледно-желтое твердое вещество отфильтровали и промыли растворителем. Извлекли (1,07 г, 0,0026 моль). Из фильтрата дополнительно извлекли посредством повторной перекристаллизации. Общий выход составил 1,94 г, 0,0047 моль.

Часть 5. получили путем добавления стехиометрического количества MeLi (1,4 M в простом эфире) в суспендированный в простом эфире. Получили белое твердое вещество с 83% выходом.

2.
Часть 1. MePhSiCl2 (14,9 г, 0,078 моль) разбавили 250 мл тетрагидрофурана. Медленно добавили Me4C5HLi (10,0 г, 0,078 моль) в виде твердого вещества. Реакционный раствор оставили на всю ночь для перемешивания. Растворитель удалили с помощью вакуума в холодную ловушку, поддерживаемую при температуре -196oC. Добавили петролейный эфир для осаждения LiCl. Смесь профильтровали через цеолит, и из фильтрата удалили пентан. MePhSi(Me4C5H)Cl (20,8 г, 0,075 моль) выделили в виде желтой вязкой жидкости.

Часть 2. (4,28 г, 0,054 моль) растворили в 100 мл тетрагидрофурана. По капле добавили MePhSi(Me4 C5H)Cl (15,0 г, 0,054 моль). Желтый раствор оставили для перемешивания в течение всей ночи. Растворитель удалили с помощью вакуума. Добавили петролейный эфир для осаждения LiCl. Смесь профильтровали через цеолит, а фильтрат выпарили. Получили (16,6 г, 0,053 моль) в виде очень вязкой жидкости.

Часть 3. (16,6 г, 0,053 моль) разбавили 100 мл простого эфира. Добавили медленно MeLi (76 мл, 0,106 моль, 1,4 М) и реакционную смесь оставили для перемешивания примерно в течение 3 ч. Объем эфира уменьшили, и соль лития отфильтровали и промыли пентаном, получив 20,0 г бледно-желтого твердого вещества, имеющего состав:
Часть 4. (5,00 г, 0,0131 моль) суспендировали в 100 мл Et2O. Медленно добавили HfCl4 (4,20 г, 0,0131 моль) и реакционную смесь оставили на всю ночь для перемешивания. Растворитель удалили с помощью вакуума, и добавили петролейный эфир для осаждения LiCl. Смесь профильтровали через цеолит. Фильтрат выпарили примерно досуха и отфильтровали. Отфильтрованное белое твердое вещество промыли петролейным эфиром. Получили (3,54 г, 0,0058 моль).

Часть 5. получили, добавив стехиометрическое количество MeLi (1,4 M в простом эфире) к суспензии в простом эфире Белое твердое вещество получено почти с количественным выходом.

Полимеризация.

Пример 1.

Раствор катализатора, приготовленный из 19,7 мг и 6 мг [ДМАН] [B(pfp4] в 20 мл толуола, добавили в автоклав емкостью 1 литр из нержавеющей стали, содержащей 400 мл гексана. Реактор поддерживали при температуре 40oC с сильным перемешиванием, при этом добавляли этилен под давлением 90 фунт/дюйм2. Спустя 30 мин реакцию прекратили, получив 30 г НДРЕ после обработки. Анализ посредством гельпроникающей хроматографии (GPC) показал бимодальное распределение с модами, сцентрированными при 900000 и 20000.

Пример 2.

Раствор катализатора, приготовленный из 28,6 мг и 9 мг [ДМАН] [B(pfp4] в 20 мл толуола, добавили в 1-литровый автоклав из нержавеющей стали, содержащий 400 мл гексана. Температуру реактора поддерживали при 50oC с сильным перемешиванием содержимого, при этом добавляли 100 мл бутена и этилен под давлением 60 фунт/дюйм2. После добавки бутена и этилена было отмечено мгновенное повышение температуры до 90oC. Через 30 мин реакцию прекратили, получив 130 г воскообразного этилен-бутенового сополимера. Анализ посредством гельпроникающей хроматографии (GPC) показал бимодальное распределение с модами, сцентрированными при 27000 и 2000 примерно в равных отношениях. Инфракрасная спектроскопия показала присутствие бутена в сополимере.

Пример 3.

Раствор катализатора, приготовленный из 40 мг и 11 мг [ДМАН] [B(pfp4] в 20 мл толуола, добавили в 1-литровый автоклав, содержащий 400 мл гексана. Температуру реактора поддерживали при 40oC, при этом содержимое реактора сильно перемешивали и пропускали под давлением этилен (90 фунт/дюйм2) в течение 15 мин. Во время полимеризации температура в реакторе увеличилась от 40 до 97oC. Реактор выключили и получили 98 г полиэтилена, имеющего Mw = 47,7 K и MWD = 3,0.

Пример 4.

Раствор катализатора, приготовленный из 50 мг и 68 мг [ДМАН] [C2B9H11)2Co] в 20 мл толуола, добавили в 1-литровый автоклав, содержащий 400 мл гексана. Температуру реактора отрегулировали до 60oC, при этом содержимое реактора сильно перемешивали и подавали под давлением этилен (120 фунт/дюйм2) в течение 60 мин. Реактор выключили и получили 0,44 г полиэтилена, имеющего Mw = 538 K и MWD = 1,90.


Формула изобретения

\ \ \ 1 1. Каталитическая система для получения полиолефинов, содержащая взаимодействующие компоненты: А - компонент переходного металла IVB и B - активатор, отличающаяся тем, что в качестве компонента А она содержит одно из соединений общей формулы I или II \\\6 \\\6 \\\1 где М - цирконий, гафний или титан и находится в состоянии высшей степени окисления (+4, d - комплекс); \\\4 (C5H5-y-xRx) - циклопентадиенильное кольцо, которое замещено 0 - 5 радикалами R, x = 0, 1, 2, 3, 4 или 5 и обозначает степень замещения, причем каждый замещающий радикал R независимо от других представляет собой группу, выбираемую из класса, который охватывает С1 - С20-гидрокарбильные радикалы, замещенные С1 - С20-гидрокарбильные радикалы, где один или несколько водородных атомов замещены атомами галогена, гидрокарбилзамещенные металлоидные радикалы С1 - С20, где атомы металлоида выбирают из группы IVA Периодической таблицы элементов, и атомы галогена, или же (C5H5-y-xRx) представляет собой циклопентадиенильное кольцо, в котором две смежные R-группы соединены и образуют цикл С4 - С20, в результате чего образуется полициклический циклопентадиенильный лиганд; \\\4 гетероатомный лиганд, в котором J - элемент с координационным числом 3 из группы VА или элемент с координационным числом 2 из группы IVA Периодической таблицы элементов, каждый из R1, независимо от других, обозначает радикал, выбираемый из класса, который охватывает С1 - С20 гидрокарбильные радикалы, замещенные С1 - С20-гидрокарбильные радикалы, где один или несколько водородных атомов замещены атомами галогена, а z - координационное число элемента J; \\\4 Q, каждый независимо от других, обозначает водород, гидрокарбильные радикалы, замещенный гидрокарбильный радикал, в котором один или несколько водородных атомов замещены электроноакцепторной группой, в частности атомом галогена или алкоксигруппой, или гидрокарбилзамещенный металлоидный радикал С1 - С20, где металлоид выбирают из группы IVA Периодической таблицы элементов при условии, что в том случае, когда любой из Q обозначает гидрокарбил, этот радикал Q отличен от группы (C5H5-y-xRx), или же оба Q совместно могут образовывать алкилиден, олефин, ацетилен или циклометаллагидроксикарбил, y = 0 или 1, причем, когда y = 1, B - ковалентная мостиковая группа, содержащая элемент группы IVA или VA; \\\4 w - число от 0 до 3; \\\4 L - нейтральное основание Льюиса или же L обозначает соединение второго переходного металла того же самого типа, вследствие чего оба металлических центра M и M' связаны мостиковыми группами Q и Q', где значения символа M' идентичны значениям символа M, а значения символа Q' идентичны значениям Q, причем такие соединения отвечают формуле II, \\\1 а в качестве компонента В активатор, включающий (1) катион, который вступает в необратимую реакцию по меньшей мере с одним лигандом, входящим в состав упомянутого соединения металла группы IVB, и (2) подвижный объемный анион, который представляет собой либо комплекс с одной координационной связью, содержащий множество липофильных радикалов, которые образуют ковалентную координационную связь, защищают центральный, несущий заряд атом металла или металлоида, или анионный комплекс, содержащий множество атомов бора, причем объемность указанного аниона такова, что при взаимодействии катионной части активатора с реакционноспособным протоном заместителя упомянутого переходного металла группы IVВ образуется металлический катион, указанный анион находится в стерически затрудненном состоянии для образования ковалентной координационной связи с металлическим катионом группы IVB, а подвижность указанного аниона такова, что упомянутый анион способен замещаться с отщеплением от указанного металлического катиона группы IVВ ненасыщенным углеводородом, у которого сила основания Льюиса равна или превышает силу этилена, причем указанные компоненты взаимодействуют в эквимолярных количествах. \ \\2 2. Система по п.1, отличающаяся тем, что элемент J гетероатомной лигандной группы представляет собой азот, фосфор, кислород или серу. \\\2 3. Система по п.2, отличающаяся тем, что y = 1, а В - линейная, разветвленная или циклическая алкиленовая группа, содержащая от 1 до 6 углеродных атомов, алкилзамещенная силилалкиленовая группа, содержащая 1 или 2 атома кремния вместо углеродных атомов в мостике, или алкилзамещенная силаниленовая группа Si1 - Si2. \\\2 4. Система по п.3, отличающаяся тем, что элемент J гетероатомной лигандной группы представляет собой азот. \\\2 5. Система по п.4, отличающаяся тем, что y = 1, а В - алкилзамещенная силилалкиленовая группа, содержащая 1 или 2 атома кремния вместо углеродных атомов в мостике, или алкилзамещенная силаниленовая группа Si1 - Si2. \ \ \2 6. Система по п.2, отличающаяся тем, что указанный активатор отвечает формуле \ \\6 \\\1 где L' - нейтральное основание Льюиса; \\\4 Н - водород; \\\4 (L' - H) - кислота Бренстеда; \\\4 M' - металл или металлоид, выбираемый из групп VB - VA Периодической таблицы элементов, т.е. из групп VB, VIB, VIIB, VIII, IB, IIB, IIIA, IVA и VA; \\\4 Q1 - Qn каждый независимо от других представляют собой водород, диалкиламидо, алкоксид, арилоксид, гидрокарбил, замещенные гидрокарбил или органометаллоидный радикалы, причем один, но не больше, чем один Q1 - Qn может быть галогеном; \\\4 m - целое число от 1 до 7; \ \ \ 4 n - целое число от 2 до 8; \\\4 n - m = d. \\\2 7. Система по п.6, отличающаяся тем, что активатор представлен формулой \\\6 \\\1 где L' - нейтральное основание Льюиса; \ \ \ 4 Н - водород; \\\4 [L'-H] - кислота Бренстеда; \\\4 В - бор в валентном состоянии 3; \\\4 Ar1 и Ar2 - одинаковые или различные, ароматические или замещенные ароматические углеводороды, причем эти радикалы могут быть связаны друг с другом через устойчивую мостиковую группу; \\\4 X3 и X4 - независимо водород, галоид, гидрокарбил, замещенный гидрокарбил или органометаллоидный радикал. \\\2 8. Система по п.7, отличающаяся тем, что активатор представлен формулой \\\6 \\\1 где L' - нейтральное основание Льюиса; \\\4 Н - атом водорода; \ \\4 [L'H] - кислота Бренстеда; \\\4 В - бор с валентностью 3+. \\\2 9. Система по п.7, отличающаяся тем, что элементом J группы гетероатомного лиганда является азот. \\\2 10. Система по п.7, отличающаяся тем, что M - цирконий. \\\2 11. Система по п.7, отличающаяся тем, что циклопентадиенильное кольцо содержит четыре замещающие группы R, х = 4. \\\2 12. Система по п.7, отличающаяся тем, что M - гафний. \\\2 13. Система по п.7, отличающаяся тем, что циклопентадиенильное кольцо содержит одну замещающую группу R, а х = 1. \\\2 14. Система по п.6, отличающаяся тем, что активатор отвечает формулам \\\6 \\\6 \\\1 где [L'-H] - либо H+, либо аммоний, либо замещенный аммониевый катион, в котором до 3 водородных атомов, замещены гидрокарбильным радикалом, содержащим от 1 до 20 углеродных атомов, или замещенным С1 - С20-гидрокарбильным радикалом, где один или несколько водородных атомов замещены атомами галогена, фосфониевые радикалы, замещенные фосфониевые радикалы, в каждом из которых до 3 водородных атомов замещены С1 - С20-гидрокарбильным радикалом, или замещенным С1 - С20-гидрокарбильным радикалом, где один или несколько водородных атомов замещены атомами галогена, и тому подобное; \\\4 С - углеродный атом; \ \\4 M'' - атом бора; \\\4 X, X', X'', X3, X4 и X5 - каждый радикал, выбираемый независимо от других из класса, который охватывает водород, галогены, С1 - С20-гидрокарбильные радикалы, замещенные С1 - С20-гидрокарбильные радикалы, где один или несколько водородных атомов замещены атомами галогена, органометаллоидные радикалы, у которых каждый гидрокарбильный заместитель в органической части содержит от 1 до 20 углеродных атомов, а указанный металл выбирают из группы IVA Периодической таблицы элементов; \\\4 M - атом переходного металла; \\\4 а и b - каждый целое положительное число, превышающее 0; \\\4 с - целое положительное число, превышающее 1; \\\4 a + b + c - целое положительное четное число от 2 до 8; \\\4 m - целое положительное число от 5 до 22; \\\4 каждый из a' и b', из которые могут быть как идентичными, так и различными, превышает 0; \\\4 c' - целое положительное число, превышающее 2; \\\4 a' + b' + c' - целое положительное четное число приблизительно от 4 до 8; \\\4 m' - целое положительное число от 6 до 12; \ \\4 n - такое целое положительное число, что 2c' - n = d; \\\4 d - целое положительное число, превышающее или равное 1. \\\2 15. Система по п.14, отличающаяся тем, что активатор \\\6 \\\1 где L' - нейтральное основание Льюиса; \\\4 Н - атом водорода; \\\4 [L'H] - кислота Бренстеда. \\\2 16. Композиция, используемая для полимеризации олефинов, содержащая группу катиона соединения переходного металла и аниона активатора, отличающаяся тем, что указанные группы отвечают формуле \\\6 \\\1 где M - цирконий, гафний или титан и находится в состоянии высшей степени окисления (комплекс +4, d); \ \\4 (С5H5-y-xRx) представляет циклопентадиенильное кольцо, замещенное группами R от 0 до 5, х = 0, 1, 2, 3, 4 или 5, обозначая степень замещения, а каждая замещенная группа R представляет независимый радикал, выбранный из группы, состоящей из С1 - С20-гидрокарбильных радикалов, замещенных гидрокарбильных радикалов, где один или более атомов водорода замещены атомами галогена, гидрокарбилзамещенных металлоидных радикалов С1 - С20, где металлоид выбран из группы IVA Периодической таблицы элементов, и галогенов, либо (С5H5-y-xRx) представляет кольцо циклопентадиенила, в котором две смежные R-группы вместе образуют цикл С4 - С20 для получения полициклического циклопентадиенильного лиганда; \\\4 представляет гетероатомный лиганд, в котором J - элемент с координационным числом 3 из группы VA или элемент с координационным числом два из группы VIA Периодической таблицы элементов и каждое R' представляет независимый радикал, выбранный из группы, состоящей из С1 - С20-гидрокарбильных радикалов, замещенных С1 - С20-гидрокарбильных радикалов, в которых один или больше атомов водорода замещены атомами галогена, а z - координационное число элемента J; \\\4 Q каждый может представлять независимо от других атом водорода, С1 - С50-гидрокарбильные радикалы, замещенные гидрокарбильные радикалы, в которых один или несколько атомов водорода замещены электроноакцепторной группой, например атомом галогена или алкоксигруппой, либо С1 - С50-гидрокарбилзамещенные металлоидные радикалы, в которых металлоид выбран из группы IVA Периодической таблицы элементов при условии, что, когда любое Q - гидрокарбил, то такое Q отличается от (С5H5-y-xRx), или оба Q вместе могут быть алкилиденом, олефином, ацетиленом или циклометаллогидрокарбилом, y = 0 или 1, когда y = 1, В - ковалентная мостиковая группа, содержащая элемент группы IVA или группы VA; \\\4 L - нейтральное основание Льюиса; \\\4 w - число от 0 до 3; \\\4 [A]- - лабильный объемный анион, который представляет собой простой координационный комплекс, имеющий множество липофильных радикалов, образующих ковалентную координационную связь и защищающих центральный несущий заряд атом металла или металлоида, либо анионный комплекс, содержащий множество атомов бора. \\\2 17. Композиция по п.16, отличающаяся тем, что группа [A]- отвечает общей формуле \\\6 \\\1 где M' - металл или металлоид, выбираемый из групп VB-VA Периодической таблицы элементов, т.е. групп VB, VIB, VIIB, VIII, IB, IIB, IIIA, IVA и VA; \\\4 Q1 - Qn каждый выбирают независимо от других из класса, который охватывает водород, диалкиламидорадикалы, алкоксидные и арилоксидные радикалы, гидрокарбильные и замещенные гидрокарбильные радикалы, а также органометаллоидные радикалы, причем любой один, но не более чем один из символов с Q1 по Qn может обозначать галоген, а значения остальных символов с Q1 по Qn независимо от других выбирают из перечисленных радикалов; \ \ \4 m - целое положительное число от 1 до 7; \\\4 n - целое положительное число от 2 до 8; \\\4 n - m = d. \\\2 18. Композиция по п.16, отличающаяся тем, что [A]- отвечает общим формулам \\\6 \\\6 \ \\1 где С - углеродный атом; \\\4 M'' - атом бора или фосфора; \\\4 X, X', X'', X3, X4 и X5 - каждый радикал, выбираемый независимо от других из класса, который охватывает атомы водорода, галогениды, гидрокарбильные радикалы, каждый из которых содержит от 1 до 20 углеродных атомов, замещенные С1 - С20-гидрокарбильные радикалы, где один или несколько водородных атомов замещены атомами галогена, органометаллоидные радикалы, у которых каждый гидрокарбильный заместитель в органической части содержит от 1 до 20 углеродных атомов, а указанный металл выбирают из группы IVA Периодической таблицы элементов; \\\4 M - атом переходного металла; \\\4 a и b - каждый целое положительное число, превышающее 0; \\\4 x - целое положительное число, превышающее 1; \\\4 a + b + c - целое положительное четное число приблизительно от 2 до 8; \\\4 m - целое положительное число от 5 до 22; \\\4 a' и b', которые могут быть как идентичными, так и различными, каждый превышает 0; \\\4 c' - целое положительное число, превышающее 2; \\\4 a' + b' + c' - целое положительное четное число приблизительно от 4 до 8; \\\4 m - целое положительное число от 6 до 12; \\\4 n - такое целое положительное число, что 2c' - n = d; \\\4 d - целое положительное число, превышающее или равное 1. \\\2 19. Композиция по п.17, отличающаяся тем, что [A]- - группа формулы \\\6 \\\2 20. Композиция по п.18, отличающаяся тем, что [A]- - группа формулы \\\6 \\\2 21. Композиция, используемая для полимеризации олефинов, содержащая группу катиона соединения переходного металла и аниона активатора, отличающаяся тем, что указанные группы отвечают формуле \\\6

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к способу получения катализатора типа катализатора Циглера-Натта, имеющего гранулированный носитель

Изобретение относится к каталитической системе, используемой для стереоспецифической полимеризации альфа-олефинов, в частности пропилена, и полипропилену, полученному в присутствии каталитической системы

Изобретение относится к катализатору на носителе для полимеризации олефинов, способу его получения и использованию указанного катализатора в процессах полимеризации олефинов

Изобретение относится к способу газофазной полимеризации олефинов формулы СH2 = СНR, где R - водород, алкил или арил с 1 - 8 атомами углерода

Изобретение относится к компоненту катализатора или катализатору, который пригоден для использования в реакции стереорегулярной полимеризации или сополимеризации альфа-олефинов и особенно касается магнийсодержащего, титансодержащего компонента катализатора на подложке или катализатора, пригодного для получения гомополимера или сополимера альфа-олефина

Изобретение относится к титансодержащему компоненту катализатора полимеризации этилена, с помощью которого с большой полимеризационной активностью можно получить полимер этилена с узким распределением размеров частиц, к катализатору полимеризации этилена включающему этот титансодержащий компонент и к процессу полимеризации этилена с использованием указанного катализатора полимеризации этилена

Изобретение относится к способам получения низкомолекулярных поли-1-олефинов с применением катализатора на основе дисперсии алкоголята магния в насыщенном углеводороде или смесях углеводородов, а также к получаемым низкомолекулярным поли-1-олефинам

Изобретение относится к каталитической системе, используемой для стереоспецифической полимеризации альфа-олефинов, в частности пропилена, и полипропилену, полученному в присутствии каталитической системы

Изобретение относится к разработке каталитической системы для олигомеризации этилена в альфа-олефины и может найти применение в химической и нефтехимической промышленности

Изобретение относится к компоненту катализатора полимеризации олефинов, к катализатору, содержащему этот компонент и к использованию этого катализатора для полимеризации -олефинов формулы CH2 = CHR, где R - водород или алкильный радикал, имеющий 1-12 атомов углерода

Изобретение относится к способу газофазной полимеризации этилена и этиленовых смесей с -олефинами CH2=CHR в присутствии высокоактивного катализатора, включающего соединение титана, содержащее как минимум одну Ti-галогеновую связь, нанесенное на дихлорид магния в активной форме, причем способ включает следующие стадии: (a) взаимодействие каталитического компонента, (b) предполимеризация этилена или этиленовых смесей с -олефинами для получения полимера в количестве примерно 5 г на 1 г твердого компонента, увеличенное до количества, соответствующего около 10% выхода конечного катализатора, (c) полимеризация этилена или этиленовых смесей с -олефинами в газовой фазе в присутствии системы предполимер-катализатор, описанной в (b), при поддержании в газовой фазе молярной концентрации алкана между 20 и 90% по отношению к общему количеству газа

Изобретение относится к катализатору на носителе для полимеризации олефинов, способу его получения и использованию указанного катализатора в процессах полимеризации олефинов

Изобретение относится к катализатору, предназначенному для применения в полимеризации по Циглеру и содержащему металлорганическое соединение и комплекс (переходный металлимидоарил)

Изобретение относится к катализатору полимеризации олефинов, включающему переходный металл, выбранный из металлов групп IIIA, включая семейство лантанидов, IVA, VA, VIA, VIIA и VIII Периодической таблицы элементов, и лигандов L1 и L2, связанных с ним, где комбинация L1 и L2 является: (1) комбинацией лиганда L1, который является группой, содержащей по крайней мере одну фосфорсодержащую группу, и лиганда L2, который является лигандом, имеющим -связь, или лигандом, имеющим -связь и связь, выбранную из одной по крайней мере -связи и по крайней мере из одной электронодонорной связи, образованной свободной электронной парой; (2) комбинацией лиганда L1, который является 5-членным гетероциклическим пентадентатным лигандом, имеющим один или более гетероатомов, и лиганда L2, который является лигандом, имеющим -связь, или лигандом, имеющим -связь и связь, выбранную из одной по крайней мере -связи и по крайней мере одной электронодонорной связи, образованной свободной электронной парой, при условии что, когда пентадентатный лиганд содержит только один гетероатом, L2 является лигандом, имеющим -связь, или лигандом, имеющим -связь и по крайней мере одну электронодонорную связь, образованную свободной электронной парой; (3) комбинацией лиганда L1, который является трипиразолил-тридентатным лигандом, и лигандом L2, который является алкаполиенильным лигандом, каждый L1 содержит элемент группы VB или группы VIB
Наверх