Способ диагностики технического состояния авиационных гтд

 

Способ предназначен для испытания, доводки, диагностики и экспуатации реактивных двигателей, а конкретно, для диагностики технического состояния ГТД по газодинамическим параметрам потока. Сравнивают поля газодинамических параметров потока и тяги испытуемого двигателя с газодинамическими параметрами и потока и тягой эталонного двигателя и с газодинамическими параметрами потока и тягой двигателя с характерными дефектами проточной части. Такой способ позволяет повысить точность и достоверность диагностики состояния элементов проточной части ГТД, определения конкретного дефекта и его местонахождения как при испытаниях на стенде, так и в аэродромных условиях для определения дефектов двигателей, находящихся в эксплуатации. 1 ил.

Изобретение относится к области измерительной техники, к испытаниям, доводке, диагностике и эксплуатации реактивных двигателей, а конкретно, к способам диагностики технического состояния ГТД по газодинамическим параметрам потока.

Известен способ диагностики технического состояния ГТД, включающий замер полного давления потока в фиксированной точке на срезе сопла двигателя на одном и том же режиме несколько раз во времени, учитывая неравномерность полного давления, последующий расчет относительного изменения тяги двигателя, из-за изменения состояния элементов в проточной части двигателя.

Наиболее близким к предлагаемому техническому решению является способ измерения газодинамических параметров авиационных ГТД на срезе сопла, реализованный в устройстве (см. а. с. СССР N 1638586, G 01 M), включающий замер параметров потока - полного, статического давлений, температуры торможения вдоль сечения плоскости среза сопла посредством гребенки датчиков, при этом середину гребенки датчиков совмещают с центром сопла, производят замер параметров потока одновременно всеми датчиками гребенки, перемещают гребенку датчиков в одну сторону вдоль себя самой и снова производят измерения параметров одновременно всеми датчиками гребенки, затем гребенку возвращают в начальное положение, последовательно перемещая гребенку датчиков от центра в другую сторону, замеряют параметры потока, затем такие же замеры производят в любом заданном сечении плоскости среза сопла.

Данный способ можно использовать для диагностики технического состояния авиационного двигателя по газодинамическим параметрам на его выходе.

Недостатком этого способа является недостаточная точность диагностики технического состояния отдельных элементов проточной части ГТД и определение конкретного дефекта и его местонахождения.

Задачей, которую решает предлагаемое изобретение, является повышение точности и достоверности диагностики состояния элементов проточной части ГТД, определение конкретного дефекта и его местонахождения.

Поставленная задача решается тем, что в способе диагностики технического состояния авиационных ГТД, включающем замер газодинамических параметров потока - полного, статического давлений и температуры, предварительно проводят испытания бездефектного ГТД до выработки им ресурса на установившихся режимах работы во времени, замеряют поля газодинамических параметров по всей площади среза сопла, создают банк данных в виде полей кардиограмм, которые соответствуют бездефектному состоянию элементов проточной части ГТД, рассчитывают тягу двигателя и создают банк тяги двигателя R последовательно вносят характерные дефекты в отдельные элементы проточной части и замеряют поля газодинамических параметров потока - полного давления P*, статического давления P и температуры потока T* по всей площади среза сопла и на тех же режимах работы двигателя, создают банк данных в виде полей кардиоограмм, которые соответствуют этим дефектам и банк данных расчетных значений тяги двигателя R, замеряют поля газодинамических параметров потока P*, P, T* диагностируемых новых или находящихся в процессе эксплуатации двигателей по всей площади среза сопла и соответственно рассчитывают значения тяги двигателя, сравнивают их с полями газодинамических параметров потока и расчетными значениями тяги эталонного двигателя соответственно на тех же режимах работы и соответственно выработанному ресурсу, по которым судят об отклонении газодинамических параметров потока и тяги диагностируемого двигателя от эталонного, при наличии отклонения сравнивают поля кардиограмм газодинамических параметров потока и тяги двигателя с полями кардиограмм газодинамических параметров и тяги дефектных двигателей, по которым определяют конкретный дефект в диагностируемом двигателе и его местонахождение.

На фиг. 1 представлена схема устройства для осуществления предлагаемого способа.

Устройство содержит гребенку датчиков, представляющую собой подвижный пилон 1, на котором расположены датчики 2, замеряющие одновременно температуру T*, полное P* и статическое P давления, по всему срезу сопла 3. Установка снабжена автоматической системой записи показаний датчиков 2, включающей коммутатор 4, аналого-цифровой преобразователь 5, ЭВМ 6, дисплей 7 и принтер 8.

Диагностику технического состояния авиационных ГТД осуществляют следующим образом.

Проводят испытания бездефектного ГТД до выработки им ресурса на установившихся режимах работы и на переменных режимах работы. Перемещают гребенку 1 по всему срезу сопла 3 и датчиками 2 проводят одновременно замеры полей газодинамических параметров потока - температуры T*, полного давления P*, статического давления P. Сигнал поступает с датчиков 2 на коммутатор 4, откуда через аналого-цифровой преобразователь 5 в ЭВМ 6. В ЭВМ 6 создается банк данных в виде полей кардиограмм, которые соответствуют бездефектному состоянию элементов проточной части ГТД. Рассчитывают тягу двигателя соответственно на каждом режиме работы и в ЭВМ 6 создают банк данных кардиограмм тяги двигателя. При необходимости кардиограммы полей газодинамических параметров потока и тяги двигателя распечатываются на принтере 8. Последовательно вносят характерные дефекты в отдельные элементы проточной части двигателя и замеряют поля газодинамических параметров потока P*, P и T* соответственно для каждого характерного дефекта, рассчитывают тягу двигателя на каждом режиме и создают в ЭВМ 6 банк данных полей кардиограмм газодинамических параметров и тяги двигателя для каждого характерного дефекта. Имея банк данных газодинамических параметров потока - P*, P и T* и тяги двигателя эталонного, а также банк данных газодинамических параметров потока и тяги двигателя с характерными дефектами на различных режимах работы, начинают испытания диагностируемых новых или находящихся в процессе эксплуатации двигателей, замеряют поля газодинамических параметров потока P*, P и T* по всей площади среза сопла и соответственно, рассчитывают значения тяги двигателя. Сравнивают полученные значения поля газодинамических параметров и тягу двигателя с полями газодинамических параметров потока и расчетными значениями тяги эталонного двигателя, соответственно, на тех же режимах работы и соответственно выработанному ресурсу, по которым судят об отклонении газодинамических параметров потока и тяги диагностируемого двигателя от эталонного. При наличии отклонения газодинамических параметров и тяги диагностируемого двигателя от эталонного сравнивают поля кардиограмм газодинамических параметров потока и тяги двигателя с полями кардиограмм газодинамических параметров и тяги дефектного двигателя, по которым определяют конкретный дефект и его месторасположение в диагностируемом двигателе.

Таким образом, осуществляется качественная и надежная диагностика технического состояния авиационных двигателей, которые можно проводить, как на стенде при испытании новых двигателей, так и в аэродромных условиях для определения дефектов двигателей для находящихся в эксплуатации.

Формула изобретения

Способ диагностики технического состояния авиационных ГТД, включающий замер газодинамических параметров потока - полного, статического давлений и температуры, отличающийся тем, что предварительно проводят испытание бездефектного ГТД до выработки им ресурса на установившихся режимах работы и на переменных режимах работы во времени, замеряют поля газодинамических параметров потока по всей площади среза сопла, создают банк данных в виде полей кардиограмм, которые соответствуют бездефектному состоянию элементов проточной части ГТД, рассчитывают тягу двигателя и создают банк данных тяги двигателя R, последовательно вносят характерные дефекты в отдельные элементы проточной части и замеряют поля газодинамических параметров потока - полного давления P*, статического давления P и температуры T* потока по всей площади среза сопла на тех же режимах работы двигателя, создают банк данных в виде полей кардиограмм, которые соответствуют этим дефектам, и банк данных расчетных значений тяги двигателя R, замеряют поля газодинамических параметров потока P*, P, T* диагностируемых новых или находящихся в процессе эксплуатации двигателей по всей площади среза сопла и соответственно рассчитывают значения тяги двигателя, сравнивают их с полями газодинамических параметров потока и расчетными значениями тяги двигателя эталонного двигателя соответственно на тех же режимах работы и соответственно выработанному ресурсу, по которым судят об отклонении газодинамических параметров потока и тяги диагностируемого двигателя от эталонного, при наличии отклонения сравнивают поля кардиограмм газодинамических параметров потока и тяги двигателя с полями кардиограмм газодинамических параметров и тяги дефектных двигателей, по которым определяют конкретный дефект в диагностируемом двигателе и его местонахождение.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к способам контроля технического состояния газотурбинных двигателей (ГТД) и может быть использовано для диагностики газодинамической устойчивости (ГДУ) этих двигателей

Изобретение относится к способам контроля технического состояния газотурбинных двигателей (ГТД) и может быть использовано для диагностики газодинамической устойчивости (ГДУ) этих двигателей

Изобретение относится к электротормозным стендам для проведения обкатки (приработки, испытания, приемки) и диагностики (определение технического состояния на данный момент) двигателей внутреннего сгорания

Изобретение относится к испытательным стендам авиационных реактивных двигателей и может быть использовано при проектировании новых и реконструкции существующих испытательных стендов

Изобретение относится к приборостроению и предназначено для контроля за состоянием двигателей внутреннего сгорания

Изобретение относится к машиностроению и может быть использовано для приработки двигателя внутреннего сгорания в сборе со сцеплением, коробки передач и других механизмов после их изготовления или ремонта
Изобретение относится к безразборному техническому диагностированию двигателей внутреннего сгорания (ДВС) и может быть использовано для безразборного автоматизированного установления причин нарушений работоспособности ДВС в различных отраслях народного хозяйства
Изобретение относится к двигателестроению и может быть использовано при усовершенствовании условий смазки и оптимизации конструктивных параметров деталей цилиндро-поршневой группы ДВС

Изобретение относится к измерительной технике и предназначено для определения давления газов в цилиндра двигателей внутреннего сгорания

Изобретение относится к двигателестроению, в частности к способу и аппаратуре для определения октанового числа топлива и позволяет снизить количество топлива, необходимого для определения октанового числа, и повысить достоверность измерений

Изобретение относится к области машиностроения и может быть использовано при ремонтно-диагностических работах с двигателями внутреннего сгорания

Изобретение относится к области автомобилестроения и позволяет повысить эффективность работ в процессе проектирования и испытания газораспределительного механизма двигателя внутреннего сгорания (ДВС)

Изобретение относится к машиностроению, преимущественно к двигателестроению, в частности к устройствам для испытания воздухоочистителей в виде воздушных фильтров (ВФ) для двигателей внутреннего сгорания (ДВС)

Изобретение относится к измерительной технике и может быть использовано на предприятиях, эксплуатирующих автономные энергетические установки, и позволяет повысить точность определения экономии топлива (дизельного масла) за определенный промежуток времени

Изобретение относится к двигателестроению, в частности к устройствам для термических испытаний распылителей форсунок дизелей

Изобретение относится к двигателестроению, в частности к устройствам для обнаружения ошибок в приспособлении для обнаружения детонационных стуков в двигателях внутреннего сгорания

Изобретение относится к машиностроению, в частности к двигателестроению и может быть использовано для приработки двигателей внутреннего сгорания при их изготовлении и после ремонта

Изобретение относится к области машиностроения, в частности к электромеханическим стендам для обкатки и испытаний двигателей внутреннего сгорания, и позволяет обеспечивать возможность испытания нескольких двигателей и получение электроэнергии стабильных параметров при малоизменяющейся выходной мощности нагрузочного генератора
Наверх