Способ получения инварных сплавов

 

Изобретение относится к способам получения в сплавах титана инварных свойств. Способ заключается в термомеханической обработке сплавов, содержащих 50 - 66 мас.% тантала, титан - остальное, которая включает в себя закалку из - области, деформацию на 5 - 7% при комнатной температуре и нагрев до температуры обратного мартенситного превращения. Применение заявленного способа позволяет получить значение температурного коэффициента линейного расширения (ТКЛР) в пределах 1 x 10-6K-1, что соответствует лучшим образцам суперинваров.

Изобретение относится к области металлургии, в частности, к способам получения на сплавах титана инварных свойств. Изобретение может быть использовано в радиоэлектронной технике, метрологии, для соединения с диэлектриками.

С развитием радиоэлектроники потребовались металлические сплавы с минимальным температурным коэффициентом расширения на неферромагнитной основе, т.е. сплавы, не испытывающие магнитных превращений.

Ферромагнетизм инварных сплавов на железоникелевой основе не позволяет использовать эти материалы в приборах, где магнитное поле, наводимое остаточным ферромагнетизмом, является недопустимым. Поэтому возникла необходимость разработки сплавов с минимальным коэффициентом температурного расширения, не испытывающих магнитного превращения.

Известно, что основой немагнитных сплавов инварного класса является хром. Легирование хрома небольшими добавками Fe, Mn, Re, Ru, Ta, La дает возможность получить сплавы с низким значением ТКЛР. Однако хром и сплавы на его основе являются хрупкими, что не позволяет проводить пластическую деформацию. Поэтому изготовление из хромовых сплавов деталей, обладающих инварными свойствами, весьма затруднительно, а часто и невозможно (см. Прецизионные сплавы. Справочное издание/ Под ред. Молотилова Б.В. - М.: Металлургия, 1983, с. 249).

Известные сплавы на основе титана 72ТФ, 75ТМ легированные ванадием и молибденом в больших количествах (до 30%) имеют устойчивые однофазный - -твердый раствор с ОЦК - структурой от комнатной температуры до температуры плавления. Значения термического коэффициента линейного расширения (ТКЛР) высоколегированных сплавов 72ТФ, 75ТМ, составляет (8-10)х 10-6К-1, что совпадает со значениями платины и платинита. Эти значения являются относительно высокими, что не удовлетворяет требованиям новой техники. Вышеуказанные способы получения немагнитных сплавов инварного класса предусматривают легирование основы небольшими добавками (см. Прецизионные сплавы. Справочное издание/ Под ред. Молотилова Б.В. - М.: Металлургия, 1983, с. 255-256). Наиболее близкого аналога выявлено не было.

Задачей изобретения является способ получения более низких значений ТКЛР на немагнитных сплавах титана.

Более низкие значения ТКЛР достигаются за счет выбора легирующих элементов, их количества и соответствующей термомеханической обработки, обеспечивающих низкие значения ТКЛР в широком интервале температур.

Поставленная задача решается способом получения инварных сплавов, содержащих 50-66 мас% тантала, титан - остальное, который включает в себя закалку из - области, деформацию на 5-7% при комнатной температуре и нагрев до температуры обратного мартенситного превращения.

При закалке сплавов титана с Ta из однофазной высотемпературной - области образуется - мартенсит в широкой области изменения состава. Эта структура с орторомбической кристаллической решеткой является сложной по своему строению. С целью достижения на сплавах титана инварных свойств, сплавы должны иметь в исходном состоянии + - структуру, по составу близкую к сплавам с однофазной метастабильной - структурой. Структура - мартенсита в системе Ti-Ta, образованная при закалке с 900o-1000oC в воду, по сравнению с другими - изоморфными легирующими элементами, термически более устойчива к распаду. Для достижения на сплавах системы Ti-Ta инварных свойств необходима последующая деформация на 5-7% (растяжка, прокатка и др.) при комнатной температуре, которая вызывает в указанной метастабильной структуре образование мартенсита деформации. Деформация протекает при относительно малых усилиях (низкий предел текучести, большая площадка текучести). Поэтому кристаллическая решетка мартенсита деформации строго ориентирована в направлении деформирующих усилий и сохраняет когерентную связь с исходной структурой - мартенсит с ГПУ решеткой и метастабильный - твердый раствор с ОЦК решеткой). Деформированный сплав с указанной нестабильной структурой нагревают до температуры обратного мартенситного превращения, что составляет 200oC. При нагреве, в ходе обратного мартенситного превращения структура - мартенсита деформации и сама деформация возвращаются на 30-40% к исходному состоянию. Затем сплав охлаждается до комнатной температуры. В процессе охлаждения в сплаве протекает прямое - превращение, с образованием - мартенсита, идущего с увеличением объема и таким образом компенсирующего объемные изменения сплава при охлаждении. Повторный нагрев вызывает объемные и структурные изменения в обратном направлении. Таким образом, при нагреве и охлаждении в интервале температур от -100oC до +200oC сплавы системы Ti-Ta с указанной структурой проявляют инварные свойства.

Проведенные исследования показали, что материалы с уникальными инварными свойствами могут быть получены в сплавах системы Ti-Ta. Для этого выбирается состав сплава этой системы таким образом, чтобы получить 2-фазную структуру: термоупругий - мартенсит плюс метастабильный, с неустойчивой ОЦК структурой - твердый раствор,( +мет.) который при последующей деформации на 5 - 7% дает возможность получить дополнительно структуру мартенсита деформации (), ориентированного в направлении деформирующих усилий. Деформация 5-7% протекает при низком пределе текучести и большой площадке псевдотекучести. При деформации меньше чем 5% деформация осуществляется путем образования мартенсита деформации. При деформации больше, чем 7%, деформация идет по обычному дислокационному механизму.

Дилатометрический анализ сплавов системы Ti-Tа проводили на дилатометрах серии DL-1500 японской фирмы "Ульвах - Синку - Рико".

Расчет температурного коэффициента линейного расширения (ТКЛР) - проводили по формуле: где dl - изменение размера образца; T - интервал температур исследования.

Пример реализации изобретения.

Закаленный сплав, содержащий 66 мас.% тантала, титан - остальное, деформировали на 5-7% при комнатной температуре. Деформированный сплав подвергался нагреву и охлаждению от комнатной температуры до 360oC на протяжении 7 циклов. Во всех циклах наблюдались обратимые изменения длины образца. Последующие нагрев и охлаждение после снятия обратимой "памяти" формы от комнатной температуры до 100oC показали, что размеры образца практически не изменились. При повышении температуры от 20oC до 150oC ТКЛР находится в пределах 110-6К-1, что соответствует лучшим образцам суперинваров.

Формула изобретения

Способ получения инварных сплавов, содержащих 50 - 66 мас.% тантала, титан - остальное, заключающийся в том, что сплавы закаливают из -области, деформируют на 5 - 7% при комнатной температуре и нагревают до температуры обратного мартенситного превращения.



 

Похожие патенты:

Изобретение относится к продуктам на основе циркония и способам их получения

Изобретение относится к области металлургии, в частности к сплавам титана, обладающим высокими демпфирующими свойствами и хорошей пластичностью при механической обработке для использования их в качестве конструкционных материалов

Изобретение относится к металлургии, в частности, к способам термической обработки титановых сплавов и может быть использовано при производстве специальных устройств и датчиков

Изобретение относится к области обработки металлов давлением, а именно к способам подготовки мелкокристаллической глобулярной структуры в полуфабрикатах - и ( + )-титановых сплавов путем интенсивной пластической деформации

Изобретение относится к изготовлению труб и прутков из циркониевых сплавов, используемых в качестве конструкционных материалов в активных зонах атомных реакторов, в аппаратах химической и нефтегазовой промышленности и позволяет устранить наследственную неоднородность слитков из циркониевых сплавов при механической обработке, повышает качество готовых изделий

Изобретение относится к металлургии, в частности к термической обработке нагартованных листовых деталей из титана и его сплавов и может быть использовано в авиастроении и машиностроении

Изобретение относится к металлургии, в частности к вакуумной термической обработке прецизионных деталей из тугоплавких металлов и керамики применительно к энергетическим установкам и узлам электрических реактивных двигателей малой тяги для работы в космосе

Изобретение относится к металлургии и может быть использовано для повышения прочностных и эксплуатационных характеристик материалов из титана и его и псевдо a-сплавов, использующихся в медицинской промышленности и авиационной технике

Изобретение относится к области цветной металлургии и может быть использовано при получении крупногабаритных слитков из высокореакционных металлов и сплавов, например титановых

Изобретение относится к металлургии, в частности, к комплексной термической, вакуумной и химико-термической обработке деталей из технического титана и двухфазных титановых сплавов и может найти применение в ювелирной промышленности, а также в приборостроении и космической технике

Изобретение относится к металлургии, в частности к использованию сплава для изготовления жаропрочных труб-коллекторов установок производства аммиака, метанола и др

Изобретение относится к металлургии, в частности к составам лигатур для обработки железоуглеродистых сплавов

Изобретение относится к области металлургии, в частности к сплавам с эффектом памяти формы и может быть использовано для обеспечения несварного и самозатягивающегося крепежа, герметизации изделий, в качестве термочувствительных и исполнительных силовых устройств в электротехнике, приборостроении и т.д

Изобретение относится к металлургии, в частности, к жаропрочным сплавам для изготовления жаропрочных труб-коллекторов установок производства метанола, водорода, аммиака и др., с рабочими режимами при температуре 700-900oC и давлением до 50 атм

Изобретение относится к металлургии, в частности, к жаропрочным сплавам для изготовления реакционных труб установок производства аммиака, метанола и др

Изобретение относится к металлургии, в частности к стойким к окислению сплавам системы никель-кобальт-железо

Изобретение относится к области порошковой металлургии, в частности, к медно-графитовым композиционным материалам и способам их изготовления и может быть использовано при производстве электрощеточных материалов, в частности, для контактных вставок токоприемников электровозов, метропоездов и другого городского электрифицированного транспорта

Изобретение относится к области металлургии, а именно к созданию жаропрочных коррозионностойких аустенитных сплавов на железноникелевой основе, упрочняемых при дисперсионном твердении и предназначенных для изготовления высоконагруженных деталей компрессора ГТД (валы, лопатки, корпусные и др

Изобретение относится к области металлургии, в частности к сплавам титана, обладающим высокими демпфирующими свойствами и хорошей пластичностью при механической обработке для использования их в качестве конструкционных материалов
Наверх