Теплопередающее устройство

 

Изобретение относится к двухфазным теплопередающим устройствам с капиллярной прокачкой теплоносителя, в частности к тепловым трубам. Теплопередающее устройство включает контурную тепловую трубу 1, содержащую испаритель 3 с капиллярной структурой внутри и конденсатор 4. Испаритель 3 и конденсатор 4 сообщаются посредством раздельных паропровода 5 и конденсатопровода 6. Теплопередающее устройство снабжено плоской тепловой трубой 2. Активная зона 9 испарителя 3 контурной тепловой трубы 1 размещена внутри корпуса плоской тепловой трубы 2. На наружной поверхности активной зоны 9 контурной тепловой трубы 1 выполнена капиллярная структура, например, в виде мелкой винтовой нарезки, гидравлически связанная с капиллярной структурой плоской тепловой трубы 2, выполненной в виде нескольких слоев металлической сетки. Изобретение позволяет увеличить теплопередающую способность при выполнении плоской контактной поверхности в зоне подвода тепла при любой ориентации в гравитационном поле. 2 з.п. ф-лы, 3 ил.

Изобретение относится к теплотехнике, в частности к двухфазным теплопередающим устройствам с капиллярной прокачкой теплоносителя и тепловым трубам.

Известна плоская тепловая труба US N4046190, образованная двумя плоскими плитами с кромками, обеспечивающими зазор между плитами при их соединении. На внутренних поверхностях плит выполнены капиллярные канавки, расположенные под углом одна к другой и закрытые металлическим жгутом.

Недостатками такой конструкции являются незначительное расстояние теплопереноса, высокая чувствительность к положению в гравитационном поле, отсутствие механической гибкости, ограничивающей возможности монтажа.

Известна перемычка для стыковки тепловых труб, выполненная в виде тепловой трубы US N3831664. Тепловая труба - перемычка имеет плоскую форму с цилиндрическими гнездами для сопряжения с испарителем первой и конденсатором второй тепловой трубы.

Недостатком такого устройства является наличие дополнительного термического сопротивления, создаваемого стенками перемычки, а также ее собственным внутренним термическим сопротивлением.

Известна также теплопередающая система US N4602679, представляющая собой двухфазный циркуляционный контур, снабженный капиллярными насосами-испарителями, выполненными в виде плоских панелей. Каждая панель состоит из двух толстостенных пластин с выемками, образующими корпус, между которыми размещен плоский фитиль. На внутренней поверхности теплоприемной пластины, находящейся в контакте с первой поверхностью фитиля, выполнена система канавок для отвода пара, которые сообщаются с паровым коллектором и основным паропроводом. На другой пластине, находящейся в контакте со второй поверхностью фитиля, выполнена система канавок для развода жидкости из жидкостного коллектора, сообщающегося с основным конденсатопроводом системы.

Недостатком этого устройства является повышенная масса капиллярных насосов, плоская форма которых требует большой толщины стенок, чтобы выдерживать давление паров теплоносителя при рабочей температуре.

Поскольку, как правило, в подобных теплопередающих устройствах используется аммиак в качестве рабочей жидкости, являющейся наилучшим теплоносителем в диапазоне температур от 20 до 60oC, это давление может составлять величину 15-30 кг/см2. Даже при относительно малой величине контактной поверхности такого капиллярного насоса, равной, например, 200 см2, сила, действующая на каждую из пластин его корпуса, может достигать 600 кг. Толщина стенок, способная выдержать на изгиб такое давление, должна составлять не менее 5 мм.

Наиболее близкой к заявляемому техническому решению по технической сущности и достигаемому результату является контурная тепловая труба SU N1196665, содержащая цилиндрический испаритель с капиллярной насадкой (фитилем) внутри, сообщающийся с конденсатором посредством раздельных гладкостенных паропровода и конденсатопровода. Контурная тепловая труба обладает высокой теплопередающей способностью, работает при любой ориентации в гравитационном поле.

Однако при сопряжении цилиндрического испарителя с плоским охлаждающим элементом возникает необходимость в дополнительном переходном элементе. Такой элемент вносит дополнительное термическое сопротивление при передаче тепла от объекта к испарителю, которое возрастает с увеличением площади и увеличивают массу устройства.

В основу изобретения положена задача создания устройства, обладающего высокой теплопередающей способностью, работающего при любой ориентации в гравитационном поле, имеющего плоскую контактную поверхность практически необходимых размеров в зоне подвода тепловой нагрузки при минимальном весе и термическом сопротивлении.

Поставленная задача решается тем, что теплопередающее устройство, включающее контурную тепловую трубу, содержащую и испаритель с капиллярной структурой внутри, и конденсатор, сообщающиеся посредством раздельных гладкостенных паро- и конденсатопровода, снабжено плоской тепловой трубой с капиллярной структурой на внутренней поверхности. При этом активная зона испарителя контурной тепловой трубы, предназначенная для подвода тепловой нагрузки, длина которой соответствует длине зоны испарения, размещена внутри плоской тепловой трубы. На наружной поверхности активной зоны испарителя выполнена капиллярная структура, гидравлически связанная с капиллярной структурой плоской тепловой трубы.

Капиллярная структура на наружной поверхности активной зоны испарителя контурной тепловой трубы выполнена в виде мелкой винтовой нарезки.

Капиллярная структура плоской тепловой трубы выполнена в виде нескольких слоев металлической сетки.

Контурная тепловая труба заполнена теплоносителем, обеспечивающим максимальную теплопередающую способность устройства при заданной рабочей температуре, например аммиаком.

Плоская тепловая труба заполнена теплоносителем, имеющим более низкое давление паров теплоносителя при той же рабочей температуре, например ацетоном.

Роль плоской тепловой трубы в данном устройстве заключается в обеспечении изотермичности теплоприемной поверхности и подводе тепла к испарителю контурной тепловой трубы с минимальным термическим сопротивлением. Испаритель контурной тепловой трубы при этом выполняет функцию конденсатора плоской тепловой трубы, а сама контурная тепловая труба обеспечивает функцию основного теплопередающего звена. При необходимости увеличения размеров теплоприемной поверхности и соответственно длины плоской тепловой трубы в устройстве используется несколько испарителей, включенных параллельно и входящих в состав одной или нескольких контурных тепловых труб.

Таким образом, предлагаемое сочетание контурной и плоской тепловых труб, при наличии гидравлической связи капиллярной структуры на наружной поверхности активной зоны испарителя контурной тепловой трубы и капиллярной структуры плоской тепловой трубы обеспечило создание устройства, обладающего одновременно высокой теплопередающей способностью, работающего при любой ориентации в гравитационном поле и имеющего плоскую контактную поверхность практически необходимых размеров в зоне подвода тепловой нагрузки при минимальном весе и термическом сопротивлении.

На фиг.1 изображен общий вид теплопередающего устройства.

На фиг.2 представлен разрез плоской тепловой трубы и испарителя контурной тепловой трубы.

На фиг.3 представлен фрагмент общего вида теплопередающего устройства с несколькими испарителями.

Теплопередающее устройство включает контурную тепловую трубу 1 и плоскую тепловую трубу 2. Контурная тепловая труба 1 включает испаритель 3, конденсатор 4, паропровод 5 и конденсатопровод 6. Внутри испарителя 3 размещена капиллярно-пористая насадка 7 с продольными пароотводными канавками 8, которые вместе с азимутальными канавками (не показаны) на внутренней поверхности корпуса испарителя 3 образуют зону испарения. Часть испарителя 3, предназначенная для подвода тепловой нагрузки, длина которой соответствует длине зоны испарения, является активной зоной 9 испарителя 3.

Активная зона 9 размещена внутри плоской тепловой трубы 2. На наружной поверхности активной зоны 9 выполнена капиллярная структура 10, например, в виде мелкой винтовой нарезки, которая имеет гидравлическую связь с капиллярной структурой 11 плоской тепловой трубы 2, выполненной, например, в виде нескольких слоев металлической сетки. При увеличении длины теплоприемной поверхности плоской тепловой трубы 2 внутри нее размещается несколько испарителей 3, входящих в состав одной или нескольких контурных тепловых труб 1.

Теплопередающее устройство работает следующим образом.

При подводе тепла от источника тепловой нагрузки, который располагается на одной или нескольких поверхностях плоской тепловой трубы 2, теплоноситель испаряется из ее капиллярной структуры 11, поглощая тепло за счет скрытой теплоты парообразования. Образовавшийся пар распространяется до поверхности активной зоны 9 испарителя 3 контурной тепловой трубы 1 и конденсируется здесь, передавая тепло, выделяющееся при конденсации, контурной тепловой трубе 1, испаритель 3 которой в данном случае выполняет роль конденсатора плоской тепловой трубы 2. Образовавшийся конденсат впитывается в капиллярную структуру 10, выполненную на поверхности активной зоны 9, и из нее попадает в капиллярную структуру 11 плоской тепловой трубы 2, и распределяется по ней за счет действия капиллярных сил.

Тепло, отданное при конденсации контурной тепловой трубе 1, вызывает испарение теплоносителя из капиллярной структуры 7. Пар из пароотводных канавок 8 поступает в паропровод 5 контурной тепловой трубы 1 и движется в конденсатор 4, где конденсируется и отдает тепло внешнему приемнику тепла. Образовавшийся конденсат по конденсатопроводу 6 возвращается в испаритель 3, замыкая рабочий цикл и передачи тепла.

Таким образом, за счет высокой эффективной теплопроводности, присущей тепловым трубам, обеспечиваются высокая изотермичность и низкое термическое сопротивление переходного термоконтактного элемента "плоскость-цилиндр", роль которого выполняет плоская тепловая труба 2. Одновременно с этим обеспечивается низкое термическое сопротивление между плоской тепловой трубой 1, поскольку передача тепла осуществляется при непосредственной конденсации теплоносителя в плоской тепловой трубе 2 на поверхность активной зоны 9 испарителя 3 контурной тепловой трубы 1. Поскольку в плоской тепловой трубе 2 используется теплоноситель, например ацетон, давление паров которого в рабочем температурном диапазоне примерно в 25 раз ниже, чем давление паров аммиака при той же температуре, который, например, используется в качестве теплоносителя контурной тепловой трубы 1, толщина стенок плоской тепловой трубы может быть относительно малой. Этим достигается снижение веса устройства.

При этом более низкая эффективность ацетона как теплоносителя по сравнению с аммиаком не играет существенной роли, так как здесь имеет место трансформация плотности теплового потока, создаваемого тепловой нагрузкой. Кроме того, основную транспортную функцию выполняет контурная тепловая труба 1, обладающая высокой теплопередающей способностью и широким диапазоном функциональных возможностей. В то же время конструкция контурной тепловой трубы 1 позволяет использовать теплоносители с высоким рабочим давлением пара, которые являются наиболее эффективными при соответствующей рабочей температуре.

В тех случаях, когда необходимо увеличить размеры теплоприемной поверхности плоской тепловой трубы 2, в устройстве используется несколько испарителей 3, входящих в состав одной или нескольких контурных тепловых труб 1.

Формула изобретения

1. Теплопередающее устройство, включающее контурную тепловую трубу, содержащую испаритель с капиллярной структурой внутри и конденсатор, сообщающиеся посредством раздельных паро- и конденсатопровода, отличающееся тем, что оно снабжено плоской тепловой трубой, при этом активная зона контурной тепловой трубы размещена внутри корпуса плоской тепловой трубы, и на ее наружной поверхности выполнена капиллярная структура, гидравлически связанная с капиллярной структурой плоской тепловой трубы.

2. Устройство по п. 1, отличающееся тем, что капиллярная структура на наружной поверхности активной зоны испарителя контурной тепловой трубы выполнена в виде мелкой винтовой нарезки.

3. Устройство по пп. 1 и 2, отличающееся тем, что капиллярная структура плоской тепловой трубы выполнена в виде нескольких слоев металлической сетки.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к тепловым трубам и может быть использовано для отвода тепла от различных теплонапряженных объектов

Изобретение относится к двухфазным теплопередающим устройствам - контурным тепловым трубам и контурам с капиллярными насосами и направлено на создание капиллярного насоса-испарителя с любой длиной активной зоны в пределах практической потребности без снижения эффективности его работы, изготовленного на основе существующих технологий

Изобретение относится к тепловым трубам и может быть использовано для отвода тепла от теплонапряженных объектов

Изобретение относится к теплотехнике, в частности к тепловым трубам, и может быть использовано для отвода тепла от различных теплонапряженных объектов

Изобретение относится к теплотехнике, в частности к конструкциям тепловыхтруб и может быть использовано преимущественно в грунтовых аккумуляторах

Изобретение относится к теплотехнике

Изобретение относится к техническим устройствам и может бцть использовано для изготовления тепловых труб и заправки тепловых труб теплоносителем

Изобретение относится к теплотехнике и м

Изобретение относится к теплотехнике, в частности к тепловым трубам, и может быть использовано для отвода тепла от различных теплонапряженных объектов с плоской контактной поверхностью

Изобретение относится к энергетике и теплофизике и может быть использовано при создании теплопередающих тепловых труб (ТТ), преимущественно энергонапряженных, работающих во внешней вакуумной среде (ВС), в том числе в космическом пространстве

Изобретение относится к теплотехнике, в частности к тепловым трубам, и может быть использовано для отвода тепла от миниатюрных теплонапряженных объектов, в частности элементов радиоэлектронных приборов и компьютеров, требующих эффективного теплоотвода при минимальных габаритах охлаждающей системы

Изобретение относится к системам терморегулирования преимущественно телекоммуникационных спутников, использующим контурные тепловые трубы

Изобретение относится к элементам систем терморегулирования, в частности, приборов телекоммуникационного спутника

Изобретение относится к холодильной и криогенной технике

Изобретение относится к теплоэнергетике и может быть использовано для утилизации вторичных тепловых энергоресурсов и низкопотенциальной тепловой энергии природных источников, а именно для трансформации тепловой энергии в механическую. Мультитеплотрубная паротурбинная установка с капиллярным конденсатором содержит: испарительную камеру, состоящую из вертикальных испарительных гильз, сепарационной секции, внутренняя поверхность которых покрыта решеткой из полос пористого материала, распределительного коллектора с форсунками, каплеотбойника, соединенную с рабочей камерой, внутри которой помещено колесо силовой турбины, соединенной снаружи с рабочим органом и насосом, патрубок выхода пара которой соединен с конденсационной камерой, в центре которой устроен цилиндрический резервуар с перфорированными стенками, в котором помещен питательный насос, соединенный с распределительным коллектором испарительной камеры. Днище конденсационной камеры покрыто капиллярным конденсатором, который состоит из зоны конденсации - уложенных друг на друга нескольких перфорированных листов, отверстия в которых выполнены в виде конических капилляров, и конденсатного коллектора - слоя пористого лиофильного материала. В центре капиллярного конденсатора устроено цилиндрическое отверстие, в котором помещены ограничительное кольцо, транспортное кольцо, цилиндрическая обойма с перфорированными стенками, образующая цилиндрический резервуар. Достигается увеличение надежности и эффективности мультитеплотрубной паротурбинной установки с капиллярным конденсатором. 5 ил.

Изобретение относится к области светотехники, а именно к мощным светодиодным лампам с объемным светодиодным (СД) модулем и охлаждением на основе малогабаритной тепловой трубы (ТТ). Техническим результатом изобретения является повышение эффективности и мощности СД-ламп до уровня 20-120 Вт. Лампа содержит полый объемный СД-модуль, который может быть выполнен в виде прямой призмы, усеченного икосаэдра или двух сопряженных между собой основаниями усеченных пирамид, полости которых выполнены или в каждой из них установлена в тепловом контакте оболочка испарительной зоны ТТ с фитилем, имеющим капиллярную структуру, и с частично заполняющим указанную оболочку низкотемпературным жидким двухфазным теплоносителем, смачивающим фитиль. Испарительная зона ТТ соединена через адиабатическую зону с зоной конденсации пара указанного теплоносителя в окружающее пространство. Часть зоны испарения и/или адиабатическая зона может быть окружена теплоизолированным от нее кольцевым отсеком с электронным преобразователем питающей сети, подключенным к СД-модулю и к цоколю лампы. Жидкий двухфазный теплоноситель может быть выбран из группы спиртов, фреонов или дистиллированной воды с температурой кипения в пределах 36-145°С, обеспечивающих транспортирование теплоносителя в оболочке ТТ при произвольной ориентации лампы в пространстве и работоспособность в режимах испарения и/или кипения. В лампе могут быть использованы светодиоды коротковолнового излучения, а именно синего, голубого или фиолетового излучения, с преобразованием в белое излучение дистанцированным люминофором, нанесенным или интегрированным в стенки колбы. Модуль СД-лампы может быть выполнен также на светодиодах белого, красного, зеленого, желтого излучения и установлен в тепловом контакте на оболочке испарительной зоны ТТ. 8 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА) с тепловой нагрузкой от 13 до 18 кВт. СТР состоит из замкнутых жидкостных контуров и тепловых труб (ТТ), а также раскрываемых панелей радиатора (РПР). Каждый контур содержит сообщенные подконтуры модулей служебных систем (МСС) и полезной нагрузки (МПН). В сотовые приборные панели ("+Z" или "-Z") МПН встроены ТТ, а на панелях установлены жидкостные коллекторы (встроенные в другие приборные панели). Одна из РПР выполнена с коллекторами на двухфазном рабочем теле, образующемся в испарителе с капиллярным насосом, установленном на панели "+Z" или "-Z" МПН. Корпус испарителя контактирует с теплоносителем подконтура МПН. Хладопроизводительность другой РПР (с жидким теплоносителем) выбрана так, что без первой РПР обеспечивается температура приборов не выше максимально допустимой. Техническим результатом изобретения является обеспечение квалификации РПР (с аммиаком) в полетных условиях и при положительных результатах - возможность применения СТР, рассчитанной на 13 кВт, в составе КА с тепловой нагрузкой до 18 кВт (при подключении к СТР двух указанных РПР). 2 ил.
Наверх