Углеродосодержащий огнеупор

 

Изобретение относится к области производства огнеупорных материалов и может быть использовано для изготовления футеровок плавильных и металлоперерабатывающих агрегатов. Техническим результатом является снижение окисляемости и повышение шлакоустойчивости огнеупора. Углеродосодержащий огнеупор получают из массы, включающей следующие компоненты в мас.%: зернистый огнеупорный наполнитель - обожженный боксит с содержанием Al2O3 65 - 68 мас.% - 50 - 85, углеродосодержащий компонент 5 - 20, тонкомолотая составляющая с размером частиц менее 0,063 мм, выбранная из группы: обожженный боксит, и/или периклаз, и/или корунд, и/или алюмомагниевая шпинель 10 - 30, органическое связующее (сверх 100%) 3 - 8, в качестве которого используют смесь связующего фенольного порошкообразного с этиленгликолем в соотношении (1,76 - 2): 1. Материал также может содержать антиоксидант в виде бескислородных соединений титана, и/или алюминия, и/или магния, и/или хрома в количестве 0,5 - 3 мас.%. Использование указанного состава позволяет формировать огнеупоры с особо плотной и прочной структурой. 1 з.п.ф-лы, 2 табл.

Изобретение относится к огнеупорной промышленности, а именно к производству углеродосодержащих огнеупоров, используемых в футеровках плавильных и металлоперерабатывающих агрегатов.

Известен углеродосодержащий огнеупор, полученный из массы следующего состава, мас.%: Плавленый глинозем - 55-75 Карбид кремния - 10-30 Графит природный или аморфный - 5-20 Связующее в виде золя, содержащего > 5% твердого компонента, например SiO2, Al2O3 или муллита (сверх 100%) - 5-12 (см.US, патент 3892584, кл.C 04 B 35/10, C 04 B 35/52, 1975).

Недостатком указанного решения является сложность технологического процесса получения огнеупорного материала.

Известно изготовление износостойких керамических огнеупоров из природного или искусственного боксита, содержащего 78-94% Al2O3, не менее 9% SiO2, 2,8% Fe2O3, 2-4% TiO2, не менее 3% CaO, MgO.

Технология получения огнеупорного материала предусматривает помол боксита и его обжиг при температуре 1000oC в течение 4 часов, последующую засыпку обоженного боксита в графитовую форму и горячее прессование при давлении 350 кг/см2 и 1250oC в течение 5 мин, охлаждение заготовок (см.US патент 3895150, кл.B 32 B 15/02, 1975).

Недостатком данного технического решения является использование дорогостоящего метода горячего прессования заготовок.

Наиболее близким по составу к предлагаемому изобретению является углеродосодержащий огнеупор, полученный из массы следующего состава, мас.%: Огнеупорный компонент, выбранный из группы: магнезит, шпинель, глинозем, муллит, обоженный боксит, шамот и т.д., с размером частиц менее 8 мм - - Основа Углеродистый материал, выбранный из группы: порошок синтетического графита, кокс, чешуйчатый графит - - 3-25 Связующее из ряда: каменноугольная или фенольная смола, силикаты натрия или калия, силикатный золь и т.д. - - 1-6 (см.Заявку Японии 57-123872, кл.C 04 B 35/66, 1982).

Недостатком данного технического решения является получение огнеупора с повышенной окисляемостью с пониженной шлакоустойчивостью.

Техническим результатом предлагаемого изобретения является снижение окисляемости и повышение шлакоустойчивости огнеупора.

Для достижения указанного технического результата углеродосодержащий огнеупор, полученный из массы, включающей зернистый огнеупорный наполнитель на основе обожженного боксита с размером частиц менее 5 мм, углеродосодержащий компонент и органическое связующее. Углерод содержит в качестве зернистого огнеупорного наполнителя - обожженный боксит с содержанием Al2O3 65-85 мас.% и дополнительно тонкомолотую составляющую с размером частиц менее 0,063 мм, выбранную из группы: обоженный боксит, и/или периклаз, и/или корунд, и/или алюмомагниевая шпинель, а в качестве связующего смесь фенольную порошкообразную (СФП) с этиленгликолем в соотношении (1,76-2): 1 при следующем соотношении компонентов, мас.%:
Зернистый огнеупорный наполнитель - обожженный боксит с содержанием Al2O3 65-85 мас.% - 50-85
Углеродосодержащий компонент - 5-20
Тонкомолотая составляющая с размером частиц менее 0,063 мм, выбранную из группы: обожженный боксит, и/или периклаз, и/или корунд, и/или алюмомагниевая шпинель - 10-30
Указанное органическое связующее (сверх 100%) - 3-8
Кроме того, огнеупор дополнительно может содержать антиоксидант в виде бескислородных соединений титана, и/или алюминия, и/или магния, и/или хрома в количестве 0,5-3 мас.% (сверх 100%).

Использование указанного состава изобретения обуславливает формирование особо плотной и прочной структуры огнеупора с минимальным содержанием пустот. На стадии изготовления огнеупора происходит взаимодействие смеси фенольной порошкообразной и этиленгликоля на контакте основных фаз с образованием высокоогнеупорного и прочного коксового сростка, который в процессе службы слабо окисляется и смачивается агрессивными реагентами металлургических агрегатов.

Кроме этого, антиоксиданты, окисляясь, в первую очередь, уплотняют структуру и препятствуют проникновению шлаков вглубь огнеупора. При повышенных температурах службы (> 1000oC) антиоксиданты действуют как спекающие добавки, тем самым дополнительно уплотняя и упрочняя структуру огнеупора. Конечные фазы, получаемые в результате химических реакций с основными фазами, являются высокоогнеупорными.

В качестве углеродосодержащего компонента могут быть использованы кристаллический графит, графитосодержащие металлургические отходы и пекококс.

В качестве органического связующего используются связующее фенольное порошкообразное и этиленгликоль.

В качестве антиоксиданта могут быть использованы бориды и карбиды титана, алюминия, магния и хрома, а также их сплавы. Например: диборид титана TiB2, додекоборид алюминия AlB12, диборид магния MgB2, диборид хрома CrB2, карбид титана TiC, карбид алюминия Al4C3 и карбид хрома Cr3C2, а также магнийалюминиевый сплав и др. Указанный сплав (это относится ко всем металлическим сплавам) является бескислородным соединением, так как внутри его структуры находится интерметаллитсоединение Mg2 Al6.

Приготовление массы осуществляют смешением компонентов в соотношениях, указанных в табл. 1, в лабораторном бегунковом смесителе по обычно принятой технологии, предусматривающей подачу части связующего и (при необходимости) антиоксидантов на предварительно перемешанные зернистые порошки с последующим введением оставшегося количества связки в конце замеса после загрузки тонкой фракции материала.

Из приготовленных масс на гидравлическом прессе при давлении прессования 150 Н/мм2 формовали образцы и термообрабатывали при температуре 160-200oC.

На термообработанных образцах определяли прочность, глубину обезуглероженного слоя и шлаковый износ.

Изобретение иллюстрируется конкретными примерами, приведенными ниже.

В таблице 1 приведены составы для получения углеродосодержащего огнеупора, в таблице 2 - его свойства.


Формула изобретения

1. Углеродосодержащий огнеупор, полученный из массы, включающей зернистый огнеупорный наполнитель на основе обожженного боксита с размером частиц менее 5 мм, углеродосодержащий компонент и органическое связующее, отличающийся тем, что содержит в качестве зернистого огнеупорного наполнителя обожженный боксит с содержанием Al2O3 65-85 мас.% и дополнительно - тонкомолотую составляющую с размером частиц менее 0,063 мм, выбранную из группы: обожженный боксит, и/или периклаз, и/или корунд, и/или алюмомагниевая шпинель, а в качестве связующего - смесь связующего фенольного порошкообразного с этиленгликолем в соотношении (1,76 - 2) : 1 при следующем соотношении компонентов, мас.%:
Зернистый огнеупорный наполнитель - обожженный боксит с содержанием Al2O3 65-85 мас.% - 50 - 85
Углеродосодержащий компонент - 5 - 20
Тонкомолотая составляющая с размером частиц менее 0,063 мм, выбранная из группы: обожженный боксит, и/или периклаз, и/или корунд, и/или алюмомагниевая шпинель - 10 - 30
Указанное органическое связующее (сверх 100%) - 3 - 8
2. Огнеупор по п. 1, отличающийся тем, что дополнительно содержит антиоксидант в виде бескислородных соединений титана, и/или алюминия, и/или магния, и/или хрома в количестве 0,5 - 3 мас.% (сверх 100%).

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к технологии изготовления керамических изделий в системе Al2O3 - Sic-C и может быть использовано в огнеупорной промышленности

Изобретение относится к огнеупорной подотрасли, а именно к составам набивных масс для футеровки вагранок

Изобретение относится к производству огнеупорных материалов и может быть использовано при изготовлении плит для шиберных затворов сталеразливочных ковшей, ковшевых сталеразливочных стаканов и т.д

Изобретение относится к способу изготовления корундового мартеля и может найти применение в выполнении высокоогнеупорной футеровки

Изобретение относится к огнеупорным материалам, используемым для футеровки металлургических агрегатов

Изобретение относится к огнеупорной промышленности и может быть использовано при изготовлении мертеля или пасты, предназначенных для склеивания безобжиговых корундовых изделий

Изобретение относится к производству огнеупорных масс, применяемых для футеровки желобов, закрытия леток, набивки футляров чугунных леток доменных печей

Изобретение относится к промышленности огнеупорных материалов и может быть использовано для изготовления футеровки с повышенной эрозионной стойкостью при нагревании до 1750-1800°С в восстановительных средах и воздействии скоростных газовых потоков
Изобретение относится к огнеупорной промышленности, а именно к производству сталеразливочных изделий типа погружных стаканов и теплозащитных труб

Изобретение относится к производству огнеупоров и может быть использовано при изготовлении изделий для разливки металла, в частности плит шиберных затворов

Изобретение относится к области получения огнеупорных строительных материалов и может быть использовано при изготовлении бетонов, штучных изделий, набивных и торкретмасс
Изобретение относится к технологии изготовления углеродсодержащих огнеупоров на основе тугоплавких оксидов или карбида кремния и может быть использовано в огнеупорной и металлургической промышленности

Изобретение относится к промышленности, а именно к способу изготовления антиоксидантов, применяемых в производстве углеродсодержащих огнеупоров, которые применяют для футеровки металлургических агрегатов, таких как конверторы, электроплавильные печи, ковши и установки внепечной обработки стали

Изобретение относится к технологии огнеупорных материалов и может быть использовано в огнеупорной промышленности при изготовлении огнеупоров, предназначенных для работы в экстремальных условиях воздействия термических, химических, термомеханических нагружений

Изобретение относится к огнеупорной промышленности, в частности к области производства углеродсодержащих огнеупоров для футеровки различных металлургических агрегатов, например конвертеров, электросталеплавильных печей, сталеразливочных ковшей

Изобретение относится к огнеупорной промышленности и может быть использовано в технологии изготовления огнеупорных изделий

Изобретение относится к технологии изготовления огнеупоров, которые могут использоваться в металлургии, а именно к составам для изготовления безобжиговых изделий, используемых в контакте с расплавом металла

Изобретение относится к производству огнеупорных материалов, а именно к производству углеродсодержащих огнеупоров, используемых в футеровке металлургических агрегатов внепечной обработки и транспортировки металла
Наверх