Якорь многофазной электрической машины

 

Изобретение относится к электротехнике, в частности к конструкции якоря многофазной электрической машины. Задача изобретения состоит в полном уничтожении всех четных гармоник в кривой распределения в зазоре между якорем и ротором. Якорь многофазной электрической машины с числом полюсов 2р состоит из кольцевой m 3 фазной одноименнополюсной обмотки, оси каждой из катушек которой совпадают с осью вращения ротора, сердечников зубцов, принадлежащих соседним зубцовым наконечникам и размещенных по разным сторонам кольцевой одноименнополюсной обмотки, причем с любой стороны любой катушки любой фазы размещены Р сердечников зубцов. Якорь выполнен так, что число катушек фаз кольцевой обмотки равно 2 Qm, гле Q - число зубцовых наконечников, приходящихся на полюс и фазу, а m - нечетное число фаз, число зубцовых наконечников равно 2 Qmр, число зубцовых сердечников равно (2 Qm + 1)Р, по разным сторонам каждой катушки любой из фаз размещены сердечники, принадлежащие двум соседним зубцовым наконечникам, сдвинутым относительно друг друга на угол 360/2 Qm электрических градусов, для любого нечетного числа фаз каждым Q катушек, расположенных рядом вдоль оси вала ротора, образуют катушечные группы фаз, в которых катушки соединены последовательно согласно, каждая К-я и (m + К)-я катушечные группы соединены либо последовательно встречно, либо параллельно встречно, причем отсчет катушечной группы (m + К)-й ведется от любой катушечной группы, которой присваивается номер первой, началом первой фазы является начало катушечной группы, которой присвоен номер первый, началами остальных фаз m - фазной кольцевой одноименнополюсной обмотки, а именно началом второй, третьей и т.д. фаз является начало катушечных групп последовательно с номерами катушек, равными (2 Qn + 1), где n - числа натурального ряда, начиная с единицы, причем n m. 4 ил.

Изобретение относится к электротехнике, в частности к конструкции якоря многофазной электрической машины.

Якорь является одним из основных узлов в электрической машине. В нем происходит процесс преобразования механической энергии в электрическую и наоборот.

Известна конструкция якоря электрической машины, в которой якорная обмотка выполнена одно- или m-фазной кольцевой одноименно полюсной и разноименнополюсной обмоткой возбуждения, размещенной на гладком статоре, в которой с помощью зубчатого магнитопровода ротора при движении относительно гладкого магнитопровода статора коммутируется направление униполярного потока [1, с.165-167, рис. 19-1 и с. 185, рис. 20 - 8].

Недостатками известной конструкции являются наличие дополнительного воздушного зазора между щитом и валом ротора, что приводит к увеличению расхода меди на обмотку возбуждения по сравнению с одним воздушным зазором; использование половины поверхности расточки статора для проведения рабочего магнитного потока, что приводит к увеличению расхода материалов по сравнению со случаем, когда вся поверхность расточки статора используется для проведения рабочего потока.

Изобретение решает задачу полного уничтожения всех четных гармоник в кривой распределения поля в зазоре между якорем и ротором. Указанная цель достигается тем, что якорь многофазной электрической машины с числом полюсов 2p, состоящей из кольцевой m-фазной одноименнополюсной обмотки, ось каждой из катушек которой совпадает с осью вращения ротора, сердечников зубцов, принадлежащих соседним зубцовым наконечникам и размещенных по разным сторонам фазы кольцевой одноименнополюсной обмотки, причем с любой стороны любой катушки любой фазы кольцевой одноименнополюсной обмотки находятся P сердечников зубцов, отличается тем, что число катушек фаз кольцевой обмотки равно 2 Qm, где Q - число зубцовых наконечников, приходящихся на полюс и фазу, а m -нечетное число фаз, число зубцовых наконечников равно 2 Qmp, число зубцовых сердечников равно (2Qm+1)P, по разным сторонам каждой катушки любой из фаз находятся сердечники, принадлежащие двум соседним зубцовым наконечникам, сдвинутым относительно друг друга на угол эл.град.

Для любого нечетного числа фаз каждые Q катушек, расположенных рядом вдоль оси вала ротора, образуют катушечные группы фаз, в которых катушки соединяются последовательно согласно, каждая K - я и (m+K) -я катушечные группы соединяются либо последовательно встречно, либо параллельно встречно, причем отсчет катушечных групп K и (m+K) ведется от любой катушечной группы, которой присваивается номер первый, началом первой фазы является начало катушечной группы, которой присвоено номер первый, началами остальных фаз m-фазной кольцевой одноименнополюсной обмотки, а именно, начало второй, третьей и т.д. фаз, являются начала катушечных групп последовательно с номерами катушек, равными (2Qn+K), где n - число натурального ряда начиная от единицы, причем n m.

Сопоставительный анализ показывает, что предложенное устройство по способу образования зубцовой структуры, числу сердечников зубцов и зубцовых наконечников, способу образования катушечных групп и соединение их в фазы для нечетного числа фаз отличается от прототипа. Таким образом, заявленный якорь многофазной электрической машины соответствует критерию изобретения "новизна".

На фиг. 1 представлен в геометрии, развернутый в линию якорь многофазной синхронной машины с числом пар полюсов p = 1 с разрезами.

На фиг. 2 показаны составляющие потока, проходящего по зубцовому наконечнику под номером Nz= 3, созданные токами фаз.

На фиг. 3 показаны составляющие потока, проходящего по зубцовому наконечнику под номером Nz= 4.

На фиг. 4 показана преобразованная к традиционному виду якорная обмотка для случая 2p = 4.

Якорь многофазного синхронного генератора фиг. 1 с числом пар полюсов P содержит 2Qm зубцовых наконечников 1 равной длины, где m - нечетного числа фаз, Q - число зубцовых наконечников на полюс и фазу. На фиг. 1 показано для 2p=2, m = 3, Q = 1 шесть зубцовых наконечников. На фиг. 1 все зубцовые наконечники пронумерованы от N 1 до N 6.

На фиг. 1 на зубцовых наконечниках N 3 и N 4 показаны сечения S3 и S4, которые заштрихованы. Все зубцовые наконечники на фиг. 1 разных геометрических размеров.

Зубцовые наконечники под номерами N 1, 2, 3, 4, 5 имеют по одному зубцовому сердечнику - 2. Шестой зубцовый наконечник имеет два зубцовых сердечника - 3, которые являются всегда крайними. Зубцовые сердечники являются магнитными мостиками между зубцовыми наконечниками 1 и общим ярмом 4. Число зубцовых наконечников 2Qmp. Число зубцовых сердечников (2Qm+1)P. На фиг. 1 для 2p = 2; Q = 1 показано (2Qmp=6) шесть зубцовых наконечников и [(2Qm+1)P= (213+1)1= 7] семь зубцовых сердечников. На фиг. 4 показано для Q = 1, 2p = 4 [2Qmp = 2132=12] двенадцать зубцовых наконечников, пронумерованных от N1 до N12, и [(2Qm+1)P=(213+1)2=14] четырнадцать зубцовых сердечников. На фиг. 4 сечение зубцовых сердечников (2) заштриховано. Фазы кольцевой одноименнополюсной обмотки состоят из катушек, которые на фиг. 1 развернуты в линию и обозначены как Aн- Ак; Bн- Bк и т.д.

Катушки распределены вдоль оси вращения так, что оси всех фаз совпадают с осью вращения ротора, и два сердечника зубцов, принадлежащих соседним зубцовым наконечникам, размещены по разным сторонам катушки фазы кольцевой одноименнополюсной обмотки. Следующий зубцовый сердечник, находящийся с той же стороны катушки, принадлежит (2Qm+1) зубцовому сердечнику. На фиг. 4 показано, что следующий зубцовый сердечник, находящийся с любой из сторон, например, катушки Aн, принадлежит [(2QM+1)=(213+1)=7) седьмому зубцовому наконечнику. Например, зубцовый сердечник третьего зубцового наконечника расположен сверху катушки Следующий зубцовый сердечник, находящийся с той же стороны от катушки , принадлежит седьмому зубцовому наконечнику, начиная отсчет от предыдущего зубцового сердечника, т.е. N 9: (3 + 7 - 1 = 9). Зубцовый сердечник четвертого зубцового наконечника согласно фиг. 4 лежит ниже катушки Следующий зубцовый сердечник, находящийся с той же стороны катушки , принадлежит тоже седьмому наконечнику, начиная отсчет от предыдущего зубцового наконечника, т.е. за номером десять, так как 4 + 7 - 1 = 10.

Два любых соседних зубцовых наконечника сдвинуты на угол 360/2Qm эл. град. Например, на фиг. 1 для 2P = 2, Q = 1, m = 3 угол сдвига между соседними зубцовыми наконечниками равен эл.град.

Для любого нечетного числа фаз и m каждые Q катушек, расположенных рядом вдоль оси вала ротора, образуют катушечные группы фаз, в которых катушки соединяются последовательно согласно. Каждая K - я и (m + К)-я катушечные группы соединяются либо последовательно встречно, либо параллельно встречно, причем отсчет катушечных групп K и (m + K) ведется от любой катушечной группы, которой присваивается номер первый. Например, на фиг. 2 первая катушка сверху обозначена как Aн - Aк. Присвоим ей номер первый. Зададим, например, K = 2, тогда m + K = 3+2 = 5, т.е. вторая и пятая катушки должны быть соединены последовательно встречно. Третья катушка от первой будет катушка, пронумерованная как Bн - Bк, тогда m+К=3+3=6. Шестая катушка от первой будет катушка, пронумерованная на фиг. 2, как Третья и шестая катушки должны быть включены либо последовательно встречно, либо параллельно встречно, т. е. на фиг. 2 катушки (Bн - Bк) и должны быть включены встречно. Если ток в катушке (Bн - Bк), как указано на фиг. 2, направлен слева направо, то ток в катушке направлен встречно. Присвоим для примера катушке (Cн - Cк) номер первый. Пусть K = 2, тогда m + K = 5. Тогда катушка будет второй, и далее по кругу (Aн - Aк) - третьей, четвертой, (Bн - Bк) - пятой, т.е. должны быть включены последовательно вторая и пятая, а именно и (Bн - Bк). Из сказанного следует, что безразлично какой из катушек (либо катушечной группе) присвоен номер первый.

Началом первой фазы является начало катушки при Q = 1, либо катушечной группы при Q > 1, которой присвоен номер первый. Началом второй фазы и последующих фаз являются начала катушечных групп последовательно с номерами катушек, равными (2Qn+1), где n - числа натурального ряда, начиная с единицы, причем n m. Зададим m = 3. Например, на фиг. 2 первую катушку от верха обозначим как (Aн - Aк) и присвоим ей номер первый. Зададим n = 1, Q = 1. Тогда началом второй фазы будет начало катушки за номером 2Qn+1=211+1= 3. т. е. начало третьей катушки от верха фиг. 2 будет началом второй фазы, которую обозначим как (Bн - Bк). Зададим последовательно n = 2, тогда началом третьей фазы (Cн - Cк) будет катушка под номером (2Qn+1=212+1=5) - пять. Началом следующей фазы будет катушка под номером (2Qn+1=213+1=7) - семь. Пройдем по кругу все шесть катушек. Тогда седьмой катушкой будет вновь первая катушка (Aн - Aк).

На фиг. 2 показаны в плане зубцовые наконечники, пронумерованные как 1, 2, 3, 4, 5, 6. Шестой зубцовый наконечник показан дважды слева и справа. Пусть каждая катушка имеет один виток. На фиг. 2 он развернут в линию так, что слева все начала (Aн, Bн, Cн, ), а справа все концы (Aк , Bк, Cк, ). Зададим направление токов в катушках, как показано в таблице, в соответствии с векторной диаграммой токов питающей сети. Зададим значение токов в фазах в долях от максимального значения Im, как показано в таблице справа. Определим, например, поток зуба под номером 3 (Ф3) как сумму частичных потоков от всех остальных зубцов. Например, поток Фсв есть поток между зубцовым наконечником под номерами N1 и N3. Он создан токами фаз катушек и (Bн- Bк). Токи фаз создают намагничивающие силы. Изобразим вектором магнитодвижущую силу (МДС) катушки Изобразим МДС катушки фазы (Bн - Bк) как Составим таблицу МДС для потоков других зубцов (фиг. 2). Поскольку поток третьего зуба есть сумма частичных потоков от других зубцов, то найдем результирующую суммарную намагничивающую силу и обозначим ее как МДС по модулю будет равна шести МДС одной катушки фазы, т. е. На фиг. 3 найдено МДС для четвертого зуба как Из векторной диаграммы фиг. 2 видно, что МДС , но по фазе сдвинута на угол 60 эл. град., т.е. в магнитном отношении поток зуба N4, как и в машинах классического исполнения, сдвинут на угол 60 эл. град. для случая, когда P = 1, Z = 6, m = 3. По абсолютной величине поток зуба N 4 равен половине потока зуба N3, так как проекция вектора на вектор (Cos 60o) равен (половине ). Вектор МДС зуба N 2 будет сдвинут то же на 60 эл. град., но опережает вектор на 60 эл. град. и т.д. Поток зуба N 6 равен потоку зуба N3, но с обратным знаком. Максимум индукции будет под зубцами N 3 и N 6 . Ось поля будет совпадать с осями третьего и шестого зубцов. Поле симметрично относительно этой оси и имеет число полюсов 2p = 2. Поскольку ток в катушке направлен встречно току катушки (Aн - Aк), то соединим электрический конец Aк с концом Тогда начало будет концом витка Далее по правилам, указанным выше, соединим катушки фаз B и C. Тогда катушка (Aн - Aк) как бы есть одна сторона витка классической барабанной обмотки, а есть другая сторона этого витка, т.е. расчетное число витков в витке фазы есть число витков в катушке. Если число витков в катушечной группе Q, то число витков в фазе есть произведение числа витков в катушке на число катушек Q в группе. Шаг такой обмотки есть диаметральный. На фиг. 4 показана такая обмотка для случая, когда Q = 1, 2p = 4.

Был выполнен экспериментальный образец якоря с кольцевыми обмотками для случая: m = 3, Q = 1, 2p = 2. Число катушек K равно шести: K = 6.

Целью экспериментальных исследований было: 1) Определить состав гармоник в кривой поля в зазоре между якорем и ротором асинхронного двигателя при питании якоря синусоидальными токами промышленной частоты; 2) определить поток в каждом зубцовом наконечнике со стороны зазора; 3) определить положение максимума потока в зазоре, если известны токи по фазам; 4) определить величину пространственного сдвига потока в функции электрического сдвига токов в фазах.

Исследование поля велось с помощью измерительных витков, которые подключались к измерительным приборам. В качестве измерительных приборов использовались либо вольтметр, либо двухлучевой осциллограф. Для измерения состава гармоник поля изготовлялись измерительные обмотки с различным число пар полюсов, а именно: P1=1, P2=2, P3=3, P4=4 и т.д. Катушки измерительной обмотки с числом пар полюсов P1=1 выполнялись с шагом Катушки измерительной обмотки с числом пар полюсов P2= 2 выполнялись с шагом и т.д. В каждой измерительной обмотке все катушки соединялись последовательно. Число последовательно соединенных витков в каждой измерительной обмотке Wф было принято равным (Wф=40). Измерение состава гармоник производилось следующим образом. Измерительная обмотка размещалась в зазоре между индуктором и ротором. От симметричного источника регулируемого трехфазного напряжения запитывалась якорная обмотка исследуемого индуктора. В каждом шаге задавалось одно и то же действующее значение токов по фазам статора (Iфс=10A). С помощью измерительного прибора (вольтметра) измерялась ЭДС измерительной обмотки. Если в зазоре между статором и ротором существуют все гармоники поля, то измерительная обмотка с шагом y = 1, измерит ЭДС , равное где
E1; E2; E3; E4; E5;... - соответственно ЭДС от поля с числом пар полюсов P1; P2; P3; P4; P5;... .

В общем случае обмотка с шагом y = / измерит ЭДС

Отношение замеренных действующих ЭДС обмоток с шагом равно

Исследования лабораторного образца показали, что отношение менее 1%, т. е. потока с числом пар полюсов Sp1 и кратным ему (9p1, 12p1, 15p1 и т.д.) с ошибкой менее 1% можно считать, что нет. С ошибкой менее 5% можно считать, что Тогда, если принять, что в измерительных обмотках число витков в обмотке одинаково, то Амплитуда индукции для - той гармоники по отношению к амплитуде индукции первой гармоники в % соответствует

Испытания показали, что для рассматриваемой магнитной системы амплитуда индукции второй гармоники по отношению к амплитуде первой гармоники составляет величину менее 2%, третьей - меньше 1, пятой - менее 25%, седьмой - менее 15% и т.д. Таким образом, амплитуда второй гамроники по отношению к амплитуде первой гармоники уменьшена в предложенном устройстве по сравнению с прототипом более, чем в 25 раз и находится в пределах ошибки измерения. Амплитуда четвертой гармоники так же уменьшена более чем в 25 раз.

Использование заявленного изобретения позволит существенно уменьшить потери от высших гамроник и амплитуда паразитных электромагнитных моментов от высших гармоник, например, в кривой момента асинхронных двигателей.


Формула изобретения

Якорь многофазный электрической машины с числом полюсов 2p, состоящий из кольцевой m3 фазной одноименнополюсной обмотки, оси каждой из катушек которой совпадают с осью вращения ротора, сердечников зубцов, принадлежащих соседним зубцовым наконечникам и размещенных по разным сторонам фазы кольцевой одноименнополюсной обмотки, причем с любой стороны любой катушки любой фазы кольцевой одноименнополюсной обмотки размещены P сердечников зубцов, отличающийся тем, что число катушек фаз кольцевой обмотки равно 2Qm, где Q - число зубцовых наконечников, приходящихся на полюс и фазу, а m - нечетное число фаз, число зубцовых наконечников равно 2Qmp, число зубцовых сердечников равно (2Qm+1)p, по разным сторонам каждой катушки любой из фаз размещены сердечники, принадлежащие двум соседним зубцовым наконечникам, сдвинутым относительно друг друга на угол 360/2Qm электрических градусов, для любого нечетного числа фаз каждые Q катушек, расположенных рядом вдоль оси вала ротора, образуют катушечные группы фаз, в которых катушки соединены последовательно согласно, каждая K-я и (m+K)-я катушечные группы соединены либо последовательно-встречно, либо параллельно-встречно, причем отсчет (m+K)-й катушечной группы ведется от любой катушечной группы, которой присвоен номер первый, началом первой фазы является начало катушечной группы, которой присвоен номер первый, началами остальных фаз m-фазной кольцевой одноименнополюсной обмотки, а именно, началами второй, третьей и т.д. фаз, являются начала катушечных групп последовательно с номерами катушек, равными (2Qn+1), где n - числа натурального ряда, начиная с единицы, причем nm.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано при производстве асинхронных двигателей малой мощности

Изобретение относится к области конструирования электрических машин

Изобретение относится к электротехнике, касается выполнения электрических машин переменного тока и может быть использовано в гребных электродвигателях, двигателях приводов водяных насосов, гидрогенераторах и тому подобных устройствах, особенно размещенных в ограниченных габаритах, например в подводных капсулах

Изобретение относится к электротехнике, касается выполнения электрических машин переменного тока и может быть использовано в гребных электродвигателях, двигателях приводов водяных насосов, гидрогенераторах и тому подобных устройствах, особенно размещенных в ограниченных габаритах, например в подводных капсулах

Изобретение относится к электротехнике, а именно к электрическим машинам, которые могут быть использованы в качестве электропривода в случае ограничения одного из поперечных размеров двигателя, в частности при работе в системе редуктор - двигатель

Изобретение относится к электротехнике, а именно к электрическим машинам, которые могут быть использованы в качестве электропривода в случае ограничения одного из поперечных размеров двигателя, в частности при работе в системе редуктор - двигатель

Изобретение относится к электротехнике и касается создания коллекторных электрических машин

Изобретение относится к области электротехники и электромашиностроения и может быть использовано при изготовлении роторов для асинхронных двигателей динамического режима работы, регулируемых, с требованием по ограничению вибраций и шумов

Изобретение относится к области электротехники и касается конструкции коллекторных электрических машин

Изобретение относится к области электротехники, в частности к конструкции якоря многофазного синхронного генератора

Изобретение относится к области электротехники, в частности к конструкции якоря многофазного синхронного генератора

Ротор // 2125757
Изобретение относится к области электротехники

Ротор // 2125757
Изобретение относится к области электротехники

Ротор // 2125757
Изобретение относится к области электротехники

Изобретение относится к электрическим асинхронным машинам с короткозамкнутой обмоткой ротора и может быть использовано при разработке асинхронных двигателей торцевого исполнения

Изобретение относится к электротехнике и представляет собой электротехническое устройство, которое может быть использовано в качестве главного элемента в автономных источниках электрической энергии, поскольку в нем достигается КПД, превышающий в несколько раз значение данного параметра, известных устройств

Изобретение относится к области электротехники и может быть использовано в малой и альтернативной электроэнергетике

Изобретение относится к области электротехники
Наверх