Способ монтажа интегральной схемы с многоэлементным фотоприемником

 

Использование: технология сборки полупроводниковых приборов. Сущность: способ решает задачу повышения качества монтажа интегральной схемы (ИС) с многоэлементным фотоприемником (ФП) за счет улучшения контрастности наблюдаемых оператором в системе визуализации знаков совмещенная ФП и ИС. Для этого используются рельефные знаки совмещения, причем знаки совмещения ИС прозрачны для излучения подсветки и на рельефную поверхность знаков нанесено отражающее покрытие, глубина рельефа /4, a линейные размеры элементов рельефа превышают длину волны излучения подсветки, которая направляется на подложку ИС под углом arctg a/2f, где f - фокусное расстояние системы визуализации, а - диаметр объектива системы визуализации. 3 ил.

Изобретение относится к технологии сборки полупроводниковых приоров, а точнее к способам присоединения токоведущих элементов к полупроводниковому приору, и может использоваться для монтажа интегральной схемы (ИС) с многоэлементным фотоприемником (ФП).

Известно, что при монтаже ИС с многоэлементным ФП решающее значение имеет операция совмещения (перед сваркой давлением) контактных площадок ИС с выводами чувствительных элементов ФП. Для осуществления такого совмещения ИС и ФП, как правило, снабжаются специальными знаками совмещения. Обычно в процессе монтажа знаки совмещения освещают и наблюдают их в отраженном свете через микроскоп, добиваясь их совпадения. При этом точность совмещения определяется контрастностью наблюдаемого в микроскопе изображения.

Известен способ монтажа полупроводникового кристалла на монтажную плату, в котором для повышения контрастности вокруг знаков совмещения формируют области, контрастирующие по цвету с остальной платой, что достигается нанесением слоя соответствующего диэлектрика (см. заявка Японии N 60-207341, H 01 L 21/60, опубл. 18.10.85).

Однако данный способ непригоден для монтажа ИС с ФП, так как монтаж осуществляется методом "перевернутого кристалла", при котором к оператору обращена тыльная сторона подложки ИС без элементов топологии. Высокие требования к точности совмещения (единицы микрон) не позволяют использовать для совмещения боковые грани кристалла ИС и возникает необходимость визуализации знаков совмещения сквозь подложку ИС. Эта задача решается средствами инфракрасного (ИК) видения, например, с помощью ИК-видикона, не располагающими возможностью цветопередачи.

Известен способ, позволяющий осуществить монтаж ИС с многоэлементным ФП, в котором для совмещения ИС с ФП используется ИК-микроскоп. Монтируемые элементы устанавливают параллельно друг над другом, затем осуществляют подсветку знаков совмещения ИК излучением, прошедшим через подложку ИС, и рассматривают их через ИК-микроскоп с помощью системы визуализации, добиваясь совпадения знаков совмещения ИС и ФП (см. , например, IEEE Transaction on electron devices, v. ED-25, n 2, 1978, pp. 213-232, Longo J.T. et al. Infpared focal planes in intrinsic semicondaction). Этот способ, как наиболее близкий к предлагаемому, принят за прототип.

Однако в данном способе при использовании обычных плоских знаков совмещения, наблюдаемых оператором в системе визуализации, является недостаточной. Это связано с тем, что часть излучения подсветки, отразившаяся от верхней поверхности кристалла ИС и не участвующая в построении изображения знаков совмещения, тем не менее попадает в объектив системы визуализации. В результате оператору трудно добиться совпадения знаков совмещения ИС и ФП с необходимой точностью, что снижает качество монтажа.

Настоящее изобретение решает задачу повышения качества монтажа ИС с многоэлементным ФП путем повышения контрастности наблюдаемых оператором в системе визуализации знаков совмещения ИС и ФП.

Для решения этой задачи в известном способе монтажа ИС с ФП, включающем установку ИС и ФП параллельно друг над другом, подсветку знаков совмещения ИС и ФП излучением, прошедшим через подложку ИС, и приведение их в положение совпадения путем совмещения знаков, наблюдаемых в системе визуализации, используют рельефные знаки совмещения, причем знаки совмещения ИС прозрачны для излучения подсветки и на рельефные поверхности знаков нанесено отражающее покрытие, глубина рельефа d1/4, а линейные размеры элементов рельефа превышают длину волны излучения подсветки, которое направляют на подложку ИС под углом arctgA/2f, где f - фокусное расстояние объектива системы визуализации; A - диаметр объектива системы визуализации.

Изобретение поясняется чертежом, где на фиг. 1 представлена схема хода лучей в процессе совмещения ИС и ФП (показан рельеф знаков совмещения); на фиг. 2 - вид сверху на контуры знаков совмещения матрицы ФП и ИС (рельеф знаков не показан) а) до операции совмещения; б) после совмещения; на фиг. 3 представлена фотография наблюдаемых оператором при монтаже предлагаемым способом плоских и рельефных знаков совмещения.

Монтаж по предлагаемому способу осуществляется следующим образом. Кристалл ИС 1 установлен параллельно над ФП 2; на кристаллах ИС 1 и ФП 2 выполнены рельефные знаки совмещения 3 и 3' соответственно, содержащие элементы рельефа соответственно 4 и 4', на которые нанесено отражающее покрытие 5. Элементы рельефа 4 ИС 1 выполнены из прозрачного для излучения подсветки материала.

Излучение подсветки, направляемое на кристалл ИС 1 под углом , частично проникает в кристалл ИС 1 и, пройдя через него и через прозрачный элемент рельефа 4, достигает отражающего покрытия 5. При этом лучи, зеркально отразившиеся от верхней грани кристалла ИС 1 и не участвующие в формировании изображения знаков совмещения 3, не попадают в объектив 6 системы визуализации. Часть лучей, отразившаяся от участков покрытия 5 элементов рельефа 4, не параллельных плоскости ИС 1 попадает в объектив 6, формируя в системе визуализации изображения знаков совмещения 3 ИС 1.

Часть лучей, прошедшая кристалл ИС 1, попадает на отражающее покрытие 5 элементов рельефа 4' ФП 2. Лучи, отразившиеся от участков покрытия 5 элементов рельефа 4', не параллельных плоскости ФП 2, попадают в объектив 6, формируя в системе визуализации изображения знаков совмещения 3' ФП 2. При этом геометрические размеры элементов рельефа 4 и 4' (их глубина и линейные размеры) должны быть достаточны для формирования их изображения в отраженном свете. Для этого, как следует из законов оптики, их линейные размеры должны превышать длину волны излучения подсветки, а глубина d1/4. Полученное при соблюдении этих условий в ИК лучах изображение знаков совмещения 3 и 3' преобразуется в системе визуализации в видимое и рассматривается оператором на телевизионном мониторе. Наблюдая изображение знаков совмещения 3 и 3' на экране монитора, оператор добивается требуемого взаимного расположения ИС 1 и ФП 2.

Предлагаемый способ был опробован в лаборатории при изготовлении гибридной схемы матричного ФП на основе CdxHg1-x Te с числом элементов 128х128. Система визуализации включала в себя последовательно расположенные: объектив, систему зеркал, ИК- видикон, телевизионный монитор. Для подсветки использовалась лампа накаливания с фильтром, выделяющим длину волны подсветки >1,1 мкм. Выбор длины волны излучения подсветки определяется прозрачностью кристалла ИС, которая выполнялась из кремния. В углах кристалла ИС 1 и ФП 2 располагались знаки совмещения в виде рядов комплементарных прямоугольников размером 40 х 40 мкм, при совмещении образующих прямую полосу (см. фиг. 2). Знаки на нижнем кристалле (ФП 2) формируются вытравливанием в слое диэлектрика квадратных окон размером 5 х 5 мкм с последующим напылением слоя индия толщиной 5 мкм в качестве отражающего покрытия. На поверхности индия проступает рельеф диэлектрика. Знаки совмещения на верхнем кристалле (ИС 1) формировались травлением квадратных окон размером 5 х 5 мкм в слое поликремния с последующим нанесением отражающего покрытия толщиной 0,1 мкм. При фокусном расстоянии объектива 6, равном 25 мм, и аппертуре - 20 мм излучение подсветки падает на образец под углом 41o. Глубина элементов рельефа знаков совмещения d составляет 0,6 мкм.

Как видно из фотографии, представленной на фиг. 3, где римской цифрой I - отмечены изображения рельефных знаков совмещения, наблюдаемых оператором в системе визуализации, а II - изображения плоских знаков, наблюдаемых в той же системе при той же подсветке, контрастность изображения рельефных знаков совмещения I значительно превосходит контрастность плоских знаков II. Это обеспечивает значительное повышение качества монтажа ИС с многоэлементным ФП при использовании предлагаемого способа.

Формула изобретения

Способ монтажа интегральной схемы с многоэлементным фотоприемником, включающий установку схемы и фотоприемника параллельно друг над другом, подсветку знаков совмещения схемы и фотоприемника излучением, прошедшим через подложку схемы, и приведение их в положение совпадения путем совмещения знаков с использованием системы визуализации, отличающийся тем, что используют рельефные знаки совмещения с нанесенным на поверхность рельефа отражающим покрытием, причем, знаки совмещения схемы прозрачны для длины волны излучения подсветки ,, глубина рельефа 1/4, а линейные размеры элементов рельефа превышают длину волны излучения подсветки, которое направляют на подложку схемы под углом arctgA/2f, где f - фокусное расстояние объектива системы визуализации; A - диаметр объектива системы визуализации.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к производству электронных приборов, в частности к оборудованию для присоединения проволочных выводов к интегральным схемам (ИС)
Изобретение относится к микроэлектронике и может быть использовано в производстве ППП и ИС для присоединения кремниевого кристалла к кристаллодержателю преимущественно путем пайки на эвтектику AlGe, Al-Ge-Au

Изобретение относится к области микроэлектроники, в частности к технологии изготовления полупроводниковых приборов и ИМС

Изобретение относится к электронной технике и может быть использовано при сборке полупроводниковых приборов Цель изобретения - повышение выхода годных Способ заключается в том, что кремниевую подложку с нанесенной алюминиевой пленкой толщиной 80-100 нм разогревают до 320°С

Изобретение относится к микроэлектронике, в частности к конструированию носителей для монтажа интегральных схем

Изобретение относится к разработке и производству аппаратуры на основе изделий микроэлектроники и полупроводниковых приборов и может быть широко использовано в производстве многослойных печатных плат, а также коммутационных структур для многокристальных модулей

Изобретение относится к полупроводниковой микроэлектронике

Изобретение относится к области производства электронных компонентов

Изобретение относится к полупроводниковым кристаллам и монтажным структурам таких кристаллов
Изобретение относится к проводящим пастам для формирования металлических контактов на поверхности субстратов для фотогальванических элементов. Проводящая паста по существу свободна от стеклянной фритты. По одному варианту выполнения изобретения проводящая паста содержит металлоорганические компоненты, которые образуют твердую металлоксидную фазу при обжиге, и проводящий материал. Металлоорганические компоненты выбраны из группы, включающей карбоксилаты металлов или алкоксиды металлов, где металлом является бор, алюминий, кремний, висмут, цинк или ванадий. По другому варианту проводящая паста включает несколько предшественников, которые образуют проводящие элементы при обжиге или нагревании. Паста адаптирована для сцепления с поверхностью субстрата и при обжиге формирует твердую оксидную фазу с образованием из проводящих материалов электрического проводника на субстрате. Использование указанной проводящей пасты в линии проводящей сетки фотогальванических элементов обеспечивает повышение эффективности и коэффициента заполнения гальванического элемента. 3 н. и 11 з.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к области разработки новых элементов и устройств сверхпроводниковой электроники и создания на их основе сверхчувствительных приемных устройств с высоким спектральным разрешением и может быть использовано при создании бортовых и наземных систем, предназначенных для радиоастрономии и мониторинга атмосферы Земли, а также медицинских исследований и систем безопасности. Сущность изобретения заключается в том, что в сверхпроводниковом интегральном приемнике электрические контакты между рабочими элементами микросхемы и печатной платой смещения, служащей для задания токов управления приемником, выполнены из проволоки в виде точечных контактов, при этом единичной проволокой осуществляется сразу несколько (более 1) последовательных контактных точек. Технический результат - понижение тепловыделения в системе, устранение необходимости дополнительной настройки рабочего режима сверхпроводникового приемника, включающего в себя ряд рабочих параметров, улучшение приемных и спектральных характеристик устройства. 2 з.п. ф-лы, 7 ил.

Изобретение относится к радиоэлектронике и может быть использовано для преобразования матрично расположенных шариковых выводов микросхем из бессвинцового припоя в оловянно-свинцовые околоэвтектического состава при дальнейшем поверхностном монтаже электрорадиоэлементов и интегральных схем на печатные платы и формирования надежных и качественных паяных соединений, предназначенных для работы в жестких условиях эксплуатации. Изобретение обеспечивает указанное преобразование с минимальными механическими и тепловыми воздействиями на микросхему, для сохранения ее полной работоспособности после преобразования. Микросхему с матрично расположенными шариковыми выводами из бессвинцового припоя на основе олова и серебра устанавливают на плоскую подложку из несмачиваемого припоем материала, на которой предварительно через металлический трафарет нанесены определенные дозы припойной пасты, имеющие в своем составе повышенное содержание свинца, при этом обеспечивают совмещение и контактирование шариковых выводов и доз припойной пасты, далее производят нагрев до пиковой температуры не более 230°С и последующее охлаждение с выдержкой при температуре выше 180°С до образования в процессе кристаллизации новых шариковых выводов большего размера, состоящих из околоэвтектического оловянно-свинцового припоя, близкого по составу к эвтектическому трехкомпонентному сплаву Sn62Pb36Ag2. 2 н. и 1 з.п. ф-лы, 9 ил., 1 табл.

Изобретение относится к технологии присоединения элемента интегральной схемы (чип) к поверхности, которая содержит проводящие рисунки. Технический результат - создание способа и устройства для быстрого, плавного и надежного подключения чипа к печатной проводящей поверхности за счет точечного характера передачи тепла и приложения давления к поверхности в точках контакта. Достигается это тем, что сначала чип (201) нагревают до первой температуры, более низкой, чем температура, которую чип может выдерживать без повреждения под действием тепла. Нагретый чип прижимают к печатной проводящей поверхности с первым прижимающим усилием. Совместного воздействия первой температуры и первого прижимающего усилия достаточно для того, чтобы, по меньшей мере, частично расплавить материал печатной проводящей поверхности и/или соответствующей точки контакта на чипе (205, 206). 2 н. и 13 з.п. ф-лы, 13 ил.
Наверх